[发明专利]无人机载的路面检测系统及检测方法有效
| 申请号: | 201910305803.0 | 申请日: | 2019-04-16 |
| 公开(公告)号: | CN109902668B | 公开(公告)日: | 2022-04-22 |
| 发明(设计)人: | 张炯;胡念;杨明强;夏霜;韩若楠;崔新壮;张齐鲁 | 申请(专利权)人: | 山东大学 |
| 主分类号: | G06V20/00 | 分类号: | G06V20/00;G06V10/56;G06V10/46;G06N3/08;H04N7/18 |
| 代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 李圣梅 |
| 地址: | 250061 山东*** | 国省代码: | 山东;37 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 无人 机载 路面 检测 系统 方法 | ||
本发明公开了无人机载的路面检测系统及检测方法,包括无人机,所述无人机上设置有GPS系统及无人机飞行高度控制系统;所述无人机上搭载有摄像头,所述摄像头连接图像传感器;所述图像传感器的输出端连接至信号放大电路的输入端,所述信号放大电路的输出端连接至信号转换电路的输入端;所述信号转换电路的输出端连接至无线数传电台;所述信号放大电路的输入端连接信号检测及处理电路的输出端,信号检测及处理电路的输入端连接控制器;地面无线数传电台由电平转接板连接地面服务器,搭载在无人机上的无线数传电台与地面无线数传电台通过无线方式通信。能够采集不同的路面信息并分别进行图像处理,建立相应的模型,能够实时动态对路面进行检测。
技术领域
本公开涉及交通路面检测技术领域,特别是涉及无人机载的路面检测系统及检测方法。
背景技术
随着道路交通的发展,道路交通在经济发展中扮演着重要的角色,也给人们出行带来极大便利。然而,其伴随产生的问题也尤为突出,如,路面下陷,路面断裂,遗撒物体,施工中产生的固体废物未及时清理,道路中间停留的小动物等一系列问题,严重影响车辆正常行驶,造成大量交通事故。目前国内部分路面检测系统只用于解决其中有些问题,无法全面快速,高效解决道路所产生的问题。如高速公路上的遗撒物,依赖于两人驾驶一辆工程车,每天沿高速公路完成50公里的目测检查全国高速公路里程13.6万公里耗费大量人力物力。
发明内容
为了解决现有技术的不足,本公开实施例子提供了无人机载的路面检测系统,能够实时动态对路面进行检测。
为了实现上述目的,本申请采用以下技术方案:
无人机载的路面检测系统,包括无人机,所述无人机上设置有GPS系统及无人机飞行高度控制系统;
所述无人机上搭载有摄像头,所述摄像头连接图像传感器;所述图像传感器的输出端连接至信号放大电路的输入端,所述信号放大电路的输出端连接至信号转换电路的输入端;所述信号转换电路的输出端连接至无线数传电台;
所述信号放大电路的输入端连接信号检测及处理电路的输出端,信号检测及处理电路的输入端连接控制器;
地面无线数传电台由电平转接板连接地面服务器,搭载在无人机上的无线数传电台与地面无线数传电台通过无线方式通信。
进一步的技术方案,在地面服务器中用于对采集的图像进行图像的处理,包括灰度化、图像平滑和锐化、图像灰度变换、图像分割;
将图像处理后的图片提取相应的物体特征;
针对拍摄的不同图像分别进行图像处理,获得图像数据集,对采集的数据集进行分类处理,使用图像数据集在卷积网络中进行预训练,对模型进行优化。
进一步的技术方案,在卷积网络中进行预训练:将数据集中的每一幅图特征参数采用反向传播算法和随机梯度下降方法,根据前向传播的loss值的大小,来进行反向传播迭代更新每一层的权重,直到模型的loss值趋向于收敛时,停止训练模型,得到深度学习模型,在图像的倒数第二层全卷积层提取深度学习特征;
对于给定任意一幅待识别的图像,输入到训练好的深度学习模型中,提取样本的深度学习特征,判别该图像属于哪个类别。
进一步的技术方案,图像数据集所包括的图像种类包括但不限于路面下陷图像,路面断裂图像,遗撒物体图像,施工中产生的固体废物未及时清理图像,道路中间停留的小动物图像。
本公开的实施例子还公开了无人机载的路面检测系统的检测方法,包括:
定位无人机所在的位置,判断无人机所检测的道路,并控制无人机沿着所检测道路飞行;
无人机飞行高度控制系统根据垂直向下发射的电波以及由地面发射回来的电波控制无人机的输出功率,以调整无人机的飞行高度;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910305803.0/2.html,转载请声明来源钻瓜专利网。





