[发明专利]一种面向表面微小结构成型的三自由度精密操作装置及其激励方法有效
申请号: | 201910280495.0 | 申请日: | 2019-04-09 |
公开(公告)号: | CN109985739B | 公开(公告)日: | 2020-12-11 |
发明(设计)人: | 刘英想;李恒禹;刘军考;陈维山;李锴 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | B05B5/00 | 分类号: | B05B5/00;B05B15/00 |
代理公司: | 哈尔滨市阳光惠远知识产权代理有限公司 23211 | 代理人: | 孙莉莉 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 面向 表面 微小 结构 成型 自由度 精密 操作 装置 及其 激励 方法 | ||
本发明提出一种面向表面微小结构成型的三自由度精密操作装置及其激励方法,属于快速成型技术领域。该操作装置包括精密驱动机构(1)、压电微喷射器(2)、轨迹刻划组件(3)和成型目标面(4);通过精密驱动机构(1)和轨迹刻划组件(3)在成型目标面(4)上进行轨迹刻划,通过刻划的轨迹对压电微喷射器(2)喷射出的微滴进行引导,以便在成型目标面(4)上实现高质量的表面微小结构成型。该操作装置具有结构简单、价格低廉且设备使用和维护成本低、成型速度快、成型分辨率高、工作噪音低小及满足多种材料喷射成型需求的优点,在生物医疗、航空航天、材料、化学以及微电子器件等领域具有广泛的应用前景。
技术领域
本发明属于快速成型技术领域,特别是涉及一种面向表面微小结构成型的三自由度精密操作装置及其激励方法。
背景技术
快速成型技术是基于“离散/堆积”思想的“增长型”制造方法,通常借助计算机、激光、微喷射、精密传动和数控等现代手段,集成计算机辅助设计和计算机辅助制造于一体,根据在计算机上设计的三维数据模型,能在很短时间内直接制造产品或者试样。快速成型技术的是一种全新的制造理念,即加法式增材制造。与传统减法式去除材料加工的方式相比,加法式增材制造方式加工精度高、材料利用率高并且能够制造任意复杂形状零件,具有明显的优势。采用快速成型技术,整个加工过程中只需要快速成型设备,摆脱了传统加工方法对多种加工工具、工装和模具的依赖,加工工艺简化,加工速度也明显提高。
目前,快速成型技术主要包括光固化快速成型、分层实体制造法、选择性激光烧结、熔融沉积成型、压电喷射成型。其中,光固化快速成型具有尺寸精度高、表面光滑、可制作任意形状表面原型制件等优点,但光固化快速成型存在加工设备和加工成本高,对悬臂结构需要采用支撑,并且成型过程中会产生异味气体等缺点;分层实体制造法具有加工大型实体零件速度快、制件硬度和抗压性能较好等优点,缺点是制件表面有明显的台阶纹理、材料耗损较大;选择性激光烧结的优点是材料利用率高、无须支撑结构、材料种类广,缺点是表面质量不高、造价昂贵、加工时有少量烟雾;熔融沉积成型具有精度较高、热熔挤压喷头结构简单、可制造任意复杂度的制件等优点,缺点是需要采用支撑结构、制件表面具有明显条纹、薄壁多孔零件不易加工。
相比于光固化快速成型、分层实体制造法、选择性激光烧结及熔融沉积成型等存在的加工成本高、污染环境、材料耗损大、表面质量较差及成型对象受限等技术问题,压电喷射成型具有成型速度较快、成型分辨率高、材料适用范围广及无污染、无噪音等优点,对此,基于压电微喷技术,研发一种面向表面微小结构成型的多自由度精密操作装置,以满足快速成型技术的性能需求显得尤为迫切和需要,在生物医疗、航空航天、材料、化学以及微电子器件等领域具有广泛的应用前景。
发明内容
本发明目的是为了解决传统光固化快速成型、分层实体制造法、选择性激光烧结及熔融沉积成型等存在的加工成本高、污染环境、材料耗损大、表面质量较差及成型对象受限等技术问题,提出了一种面向表面微小结构成型的三自由度精密操作装置及其激励方法。
本发明是通过以下技术方案实现的,本发明提出一种面向表面微小结构成型的三自由度精密操作装置,所述操作装置包括精密驱动机构1、压电微喷射器2、轨迹刻划组件3和成型目标面4;所述精密驱动机构1与成型目标面4固定连接,通过对精密驱动机构1的三自由度运动进行控制,实现成型目标面4的不同轨迹规划;所述压电微喷射器2与外围装置进行固定,能够满足多种类型材料的喷射需求;所述轨迹刻划组件3能够完成对成型目标面4的刻划,通过刻划的轨迹能够对压电微喷射器2喷射出的微滴进行引导扩散,以便在成型目标面4上实现表面微小结构成型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910280495.0/2.html,转载请声明来源钻瓜专利网。