[发明专利]一种基于生成式对抗网络的阴影去除方法有效

专利信息
申请号: 201910256619.1 申请日: 2019-04-01
公开(公告)号: CN109978807B 公开(公告)日: 2020-07-14
发明(设计)人: 蒋晓悦;胡钟昀;冯晓毅;夏召强;吴俊;李煜祥 申请(专利权)人: 西北工业大学
主分类号: G06T5/50 分类号: G06T5/50;G06T5/00;G06N3/08
代理公司: 西北工业大学专利中心 61204 代理人: 刘新琼
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 生成 对抗 网络 阴影 去除 方法
【说明书】:

发明涉及一种基于生成式对抗网络的阴影去除方法,该方法针对单幅图像阴影去除,首先设计生成式对抗网络并利用阴影图像数据集进行训练,然后通过对抗学习的方式来训练判别器和生成器,最后生成器恢复出以假乱真的阴影去除图像。本发明方法仅由一个生成式对抗网络构成,在生成器中分别设计阴影检测子网络和阴影去除子网络,并且利用十字绣模块自适应融合不同任务之间的底层特征,将阴影检测作为辅助任务,从而提升阴影去除表现。

技术领域

本发明属于图像处理技术领域,具体涉及一种图像处理尤其是单幅图像阴影去除方法。

背景技术

近年来,计算机视觉系统已经广泛应用于生产生活场景,如工业视觉检测、视频监控、医疗影像检测和智能驾驶等。然而,阴影作为自然界中普遍存在的一种物理现象,它给计算机视觉任务带来诸多不利影响,增加了问题处理的难度,降低了算法的鲁棒性。首先,阴影的形状变化很大。即使对于相同的物体,阴影的形状也会根据光源的变化而变化。其次,当光不是点光源时,阴影内部区域的强度不均匀。光源越复杂,阴影的边界区域越宽。在边界区域附近,逐渐从阴影变为非阴影。比如草地上覆盖的阴影会破坏灰度值的连续性,进而影响语义分割、特征提取和图像分类等视觉任务;又比如高速公路视频监控系统中,由于阴影随着汽车一同运动,从而降低了提取汽车形状的准确度。因此,有效的阴影去除会大大提高图像处理算法的性能。

目前,阴影去除方法主要分为两类,一类是基于视频序列,利用多幅图像的信息,通过差分法完成阴影的去除,但是应用场景十分有限且对于单幅图像无能为力;一类是基于单幅图像,通过建立物理模型或者特征提取的方法来消除图像中的阴影,但是面对复杂背景的图像,该方法的阴影去除性能将严重下降。不难看出,基于单幅图像的阴影去除的应用场景十分广泛,将是未来重点研究方向。但是因为单幅图像的可利用信息较少,所以在阴影去除性能上仍有很大的提高空间。

发明内容

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种基于生成式对抗网络的阴影去除方法。

技术方案

一种基于生成式对抗网络的阴影去除方法,所述的生成式对抗网络包括生成器和判别器,其特征在于步骤如下:

步骤1:增强阴影图像数据集;

步骤2:分别设计生成器中的阴影检测子网络和阴影去除子网络,定义生成器损失函数;

步骤2-1:设计生成器的阴影检测子网络,该网路分别由7层网络构成,其中,第1层网络是卷积核为3×3、通道数为64的卷积层,第2-6层网络由基本残差块组成,每个残差块的卷积核为3×3、通道数为64,第7层网络是卷积核为3×3、通道数为2的卷积层;

步骤2-2:定义阴影检测子网络损失函数

预设阴影检测标签图像l(w,h)∈{0,1},对于给定的像素点(w,h)属于l(w,h)的概率为:

其中Fk(w,h)记为来自阴影检测子网络最后一层k通道特征图像素点(w,h)的值,w=1,…,W1,h=1,…,H1;W1和H1分别是特征图的宽和高;故阴影检测子网络损失函数定义如下:

步骤2-3:生成器的阴影去除子网络由7层网络构成,其中,该网络的第7层网络是卷积核为3×3、通道数为1的卷积层,其余网络与步骤2-1中设计的阴影检测子网络结构保持一致;

步骤2-4:定义阴影去除子网络损失函数

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910256619.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top