[发明专利]一种基于Kronecker基稀疏表示的红外弱小目标检测方法在审
申请号: | 201910202537.9 | 申请日: | 2019-03-18 |
公开(公告)号: | CN109934178A | 公开(公告)日: | 2019-06-25 |
发明(设计)人: | 彭真明;张兰丹;杨春平;赵学功;曹思颖;彭凌冰;吕昱霄;张鹏飞;宋立;王警宇;彭闪 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/32;G06T5/00;G06T7/11;G06T7/136;G06T7/194 |
代理公司: | 成都弘毅天承知识产权代理有限公司 51230 | 代理人: | 杨保刚 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 稀疏 测度 目标函数 克基 红外弱小目标检测 目标图像 三阶张量 稀疏表示 构建 重构 红外弱小目标 红外图像处理 背景边缘 背景图像 复杂场景 红外背景 检测结果 交替方向 目标分量 目标检测 输出目标 输入目标 原始图像 稀疏性 有效地 范数 求解 权重 噪声 分割 检测 | ||
本发明公开了一种基于Kronecker基稀疏表示的红外弱小目标检测方法,涉及红外图像处理及目标检测领域;其包括步骤1:构建原始图像的三阶张量;步骤2:利用克罗内克基稀疏测度和稀疏强化权重构建目标函数,将三阶张量输入目标函数,利用交替方向乘子法ADMM求解目标函数获取背景张量和目标张量;步骤3:根据背景张量和目标张量重构背景图像和目标图像;步骤4:对目标图像进行分割输出目标检测结果;本发明利用稀疏增强权重、L1范数和克罗内克基稀疏测度构建目标函数,利用可以全面约束张量秩的克罗内克基稀疏测度来对红外背景进行约束,增强目标分量中的稀疏性,有效地抑制背景边缘和噪声,提高了在面对复杂场景时检测红外弱小目标的能力。
技术领域
本发明涉及红外图像处理及目标检测领域,尤其是一种基于Kronecker基稀疏表示的红外弱小目标检测方法。
背景技术
红外成像技术具有非接触性、捕捉细节能力强等特点,并且不受烟、雾等障碍物的影响实现昼夜的连续远距离目标的探测;红外搜索与跟踪IRST(Infrared search andtrack)系统在军事、民用等领域得到广泛应用其中,红外弱小目标检测技术作为IRST系统的一个基本功能,在红外搜索、红外预警、远距离目标检测中具有重要意义。但是,由于在红外波段中,目标的纹理、结构信息缺乏,同时远距离、复杂背景、各种杂波的影响,红外目标经常呈斑点或点状,甚至淹没在背景中,这就造成了红外弱小目标检测极其困难。
红外弱小目标检测技术分为两大类:基于单帧的弱小目标检测技术和基于多帧的弱小目标检测技术,但是由于基于多帧的检测技术需要联合多帧捕获目标的运动轨迹,排除噪声的干扰,因此需要极大的计算量和存储量,对硬件要求高,实际工程中应用很少。目前,常用的基于单帧的检测方法分为以下三类:
(1)背景抑制:背景抑制类方法基于红外图像中背景一致性的假设,采用滤波器对红外图像的背景进行预测,然后再从原图中减去背景,最后进行阈值分割以此检测弱小目标。最大中值滤波、最大均值滤波、顶帽变换、二维最小均方滤波等均属于背景抑制的范畴。尽管这类方法实现简单,但是由于噪声并不符合一致性的假设,背景抑制的方法极易受噪声杂波的影响,导致大部分低信噪比的红外图像的抑制效果很差。
(2)视觉显著性:人类视觉系统HVS(Human Visual System)涉及对比度、视觉注意和眼动三种机制,其中涉及最多的为对比度机制即假设红外图像中,目标是最显著的对象。比如,高斯差分滤波器利用两个不同的高斯滤波器计算显著性图,并对目标进行检测和识别;基于局部对比的方法,利用包含目标的小邻域局部对比度高,而不包含的目标的背景区域局部对比度低的特点,通过计算局部对比度图,突出目标,抑制背景,达到检测的目的。当红外图像符合视觉显著性假设时,这类方法可以得到优异的效果,但是,在实际应用场景下,这一假设很难满足,比如显著性的虚警源的存在时,误检问题难以克服,造成准确率低。
(3)目标背景分离:这一类方法利用的是红外图像背景的非局部自相关性以及目标的稀疏性,把目标检测问题转换为优化问题;其又可细分为基于超完备字典、低秩表示的方法和基于低秩背景与稀疏目标复原的方法。第一种方法需要提前由高斯强度模型构造不同目标尺寸和形状的超完备字典,构造目标字典的过程繁琐,检测结果受字典影响大,并且如果目标尺寸和形状变化较大时,高斯强度模型将不再适用;第二种方法借助块图像模型IPI(Infrared Patch-Image)模型可以得到低秩的原始块图像,再借助目标稀疏的特性,通过优化目标函数,同时恢复出背景和目标图像,最后得到检测结果;第二种方法效果极佳,但是存在以下两个问题:一、由于强边缘、部分噪声、虚警源也具有稀疏的特点,其会降低检测的准确率;二、由于目标函数优化的过程需要迭代,难以达到实时性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910202537.9/2.html,转载请声明来源钻瓜专利网。