[发明专利]图像处理方法及装置、电子设备和存储介质有效

专利信息
申请号: 201910103611.1 申请日: 2019-02-01
公开(公告)号: CN109829501B 公开(公告)日: 2021-02-19
发明(设计)人: 庞江淼;陈恺;石建萍;林达华;欧阳万里;冯华君 申请(专利权)人: 北京市商汤科技开发有限公司
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 北京林达刘知识产权代理事务所(普通合伙) 11277 代理人: 刘新宇
地址: 100084 北京市海淀区中*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 处理 方法 装置 电子设备 存储 介质
【说明书】:

本公开涉及一种图像处理方法及装置、电子设备和存储介质,所述方法包括:通过检测网络的均衡子网络对样本图像进行特征均衡处理,获得样本图像的均衡特征图像;通过检测子网络对均衡特征图像进行目标检测处理,获得均衡特征图像中目标对象的预测区域;分别确定每个预测区域的交并比;根据各预测区域的交并比,对多个预测区域进行抽样,获得目标区域;根据目标区域和标注区域,训练检测网络。根据本公开的实施例的图像处理方法,对目标样本图像进行特征均衡处理,可避免信息损失,提高训练效果。并且,可根据预测区域的交并比,抽取出目标区域,可提高抽取出出确定过程困难的预测区域的概率,提升训练效率,提高训练效果。

技术领域

本公开涉及计算机技术领域,尤其涉及一种图像处理方法及装置、电子设备和存储介质。

背景技术

在相关技术中,在神经网络训练的过程中,困难样本和简单样本对于神经网络训练的重要性不同,困难样本在训练过程可获取更多信息,使训练过程效率更高,且训练效果更好,但在大量样本中,简单样本的数量更多,造成训练效率较低。并且,在训练过程中,神经网络的各层级对提取的特征各有侧重,但可能造成信息损失,造成神经网络的在使用过程中检测效果不佳。

发明内容

本公开提出了一种图像处理方法及装置、电子设备和存储介质。

根据本公开的一方面,提供了一种图像处理方法,包括:

通过检测网络的均衡子网络对样本图像进行特征均衡处理,获得所述样本图像的均衡特征图像,所述检测网络包括所述均衡子网络和检测子网络;

通过检测子网络对所述均衡特征图像进行目标检测处理,获得所述均衡特征图像中目标对象的多个预测区域;

分别确定每个预测区域的交并比,其中,所述交并比为所述样本图像中目标对象的预测区域与对应的标注区域的重叠区域与合并区域的面积比;

根据各预测区域的交并比,对多个预测区域进行抽样,获得目标区域;

根据所述目标区域和所述标注区域,训练所述检测网络。

根据本公开的实施例的图像处理方法,对目标样本图像进行特征均衡处理,可避免信息损失,提高训练效果。并且,可根据预测区域的交并比,抽取出目标区域,可提高抽取出出确定过程困难的预测区域的概率,提升训练效率,提高训练效果。

在一种可能的实现方式中,根据各预测区域的交并比,对多个预测区域进行抽样,获得目标区域,包括:

根据各预测区域的交并比,将所述多个预测区域进行分类处理,获得多个类别的预测区域;

对各类别的预测区域分别进行抽样处理,获得所述目标区域。

通过这种方式,可通过交并比对预测区域进行分类,并对各类别的预测区域进行抽样,可提高抽取到交并比较高的预测区域的概率,提高目标区域中确定过程困难的预测区域的比重,提高训练效率。

在一种可能的实现方式中,通过检测网络的均衡子网络对样本图像进行特征均衡处理,获得均衡特征图像,包括:

对样本图像进行特征提取处理,获得多个第一特征图,其中,至少有一个第一特征图的分辨率与其他第一特征图的分辨率不同;

对所述多个第一特征图进行均衡处理,获得第二特征图;

根据所述第二特征图以及所述多个第一特征图,获得多个均衡特征图像。

在一种可能的实现方式中,对所述多个第一特征图进行均衡处理,获得第二特征图,包括:

分别对多个第一特征图进行放缩处理,获得多个预设分辨率的第三特征图;

对多个第三特征图进行平均处理,获得第四特征图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京市商汤科技开发有限公司,未经北京市商汤科技开发有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910103611.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top