[发明专利]一种多目标跟踪方法及系统有效
| 申请号: | 201910066671.0 | 申请日: | 2019-01-24 |
| 公开(公告)号: | CN109800721B | 公开(公告)日: | 2020-10-23 |
| 发明(设计)人: | 刘宗香;吴冕;唐修江;李良群 | 申请(专利权)人: | 深圳大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00 |
| 代理公司: | 深圳市恒申知识产权事务所(普通合伙) 44312 | 代理人: | 袁文英 |
| 地址: | 518060 广东*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 多目标 跟踪 方法 系统 | ||
本发明属于多传感器信息融合技术领域,提供了一种多目标跟踪方法及系统,将基于粒子边缘分布的贝叶斯滤波方法应用于多目标跟踪,通过新生目标生成与扩展、预测、更新、提取等步骤,利用粒子采样技术有效地解决了非线性非高斯系统中的多目标跟踪问题,可用于多目标跟踪领域,具有很强的实用性。
技术领域
本发明属于多传感器信息融合技术领域,尤其涉及一种多目标跟踪方法及系统。
背景技术
在目前的多目标跟踪中,通常假定噪声为高斯噪声,但是对于非线性非高斯系统中的多目标跟踪,是需要探索和解决的一个关键技术问题。
发明内容
本发明提供了一种多目标跟踪方法及系统,旨在解决非线性非高斯系统中的多目标跟踪的问题。
为解决上述技术问题,本发明实施例第一方面提供了一种多目标跟踪方法,所述方法包括:
新生目标的生成与扩展步骤、先由前一时刻的测量数据生成前一时刻新生目标的边缘分布,并且为所述新生目标指定存在概率,再将新生目标的边缘分布和存在概率分别扩展至前一时刻各目标的边缘分布和存在概率中,得到前一时刻目标的扩展边缘分布和扩展存在概率;
预测步骤、根据前一时刻各个目标的扩展边缘分布和扩展存在概率,使用粒子方法预测前一时刻的各个目标在当前时刻的预测边缘分布和预测存在概率;
更新步骤、根据前一时刻的各目标在当前时刻的预测边缘分布和预测存在概率,以及当前时刻的测量数据,利用粒子滤波方法确定前一时刻的各个目标在当前时刻的更新边缘分布和更新存在概率;
提取步骤、将前一时刻的各个目标在当前时刻的预测边缘分布和预测存在概率分别扩展至各个目标在当前时刻的更新边缘分布和更新存在概率中,得到当前时刻各个目标的扩展边缘分布为和扩展存在概率为同时从当前时刻目标i的扩展边缘分布中提取存在概率最大的边缘分布以及从当前时刻目标i的扩展存在概率中提取最大存在概率分别作为目标i在当前时刻的边缘分布和存在概率,其中i=1,...,Nk-1,从各个目标在当前时刻的边缘分布和存在概率中将存在概率小于第一阈值的边缘分布和存在概率裁减掉;传递裁减后余下的各目标在当前时刻的边缘分布和存在概率至下一时刻,作为下一时刻目标跟踪过程的输入;从裁减后余下的各目标在当前时刻的边缘分布中提取存在概率大于第二阈值的边缘分布作为当前时刻目标跟踪过程的输出。
为解决上述技术问题,本发明实施例第二方面提供了一种多目标跟踪系统,所述系统包括:
新生目标生成与扩展模块,用于由前一时刻的测量数据生成前一时刻新生目标的边缘分布,并且为所述新生目标指定存在概率,再将新生目标的边缘分布和存在概率分别扩展至前一时刻各目标的边缘分布和存在概率中,得到前一时刻目标的扩展边缘分布和扩展存在概率;
预测模块,用于根据前一时刻各个目标的扩展边缘分布和扩展存在概率,使用粒子方法预测前一时刻的各个目标在当前时刻的预测边缘分布和预测存在概率;
更新模块,用于根据前一时刻的各目标在当前时刻的预测边缘分布和预测存在概率,以及当前时刻的测量数据,利用粒子滤波方法确定前一时刻的各个目标在当前时刻的更新边缘分布和更新存在概率;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910066671.0/2.html,转载请声明来源钻瓜专利网。





