[发明专利]计算机整体数据识别方法在审

专利信息
申请号: 201910061148.9 申请日: 2019-01-23
公开(公告)号: CN110879954A 公开(公告)日: 2020-03-13
发明(设计)人: 任成付 申请(专利权)人: 任成付
主分类号: G06K9/00 分类号: G06K9/00;G06T7/11;G06T7/136;G06T7/13
代理公司: 暂无信息 代理人: 暂无信息
地址: 215131 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 计算机 整体 数据 识别 方法
【说明书】:

发明涉及一种整体数据识别方法,该方法包括使用一种整体数据识别平台来识别整体数据。本发明的整体数据识别平台应用面广,便于实用。由于是在针对性图像处理的基础上,对计算机库房内植物整体枯萎度进行有效判断,能够为浇水时间提供有价值的参考数据,从而在浇水次数和生长效果之间达到平衡。

技术领域

本发明涉及计算机维护领域,具体地说,本发明涉及一种计算机整体数据识别方法。

背景技术

计算机微型处理器以晶体管为基本元件,随着处理器的不断完善和更新换代的速度加快,计算机结构和元件也会发生很大的变化。随着光电技术、量子技术和生物技术的发展,对新型计算机的发展具有极大的推动作用。

20世纪80年代以来ALU和控制单元(二者合成中央处理器,即CPU)逐渐被整合到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。由控制器解释,运算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。

发明内容

本发明的目的是提供一种整体数据识别方法,该方法包括使用一种整体数据识别平台来识别整体数据,所述整体数据识别平台包括:最近邻插值设备,用于接收来自计算机库房现场的库房捕获图像,基于所述库房捕获图像分辨率距离预设分辨率阈值的远近将所述库房捕获图像平均分割成相应块大小的各个分块,对每一个分块,基于该分块的像素值方差选择对应的不同力度的最近邻插值处理以获得校正分块,将获得的各个校正分块拼接以获得最近邻插值图像。

更具体地,在所述整体数据识别平台中,所述平台还包括:亮度分析设备,与所述最近邻插值设备连接,用于接收所述最近邻插值图像,对所述最近邻插值图像中的各个对象进行解析,以获得各个对象分别对应的对象区域,将亮度值大于第一预设亮度阈值且不在任何对象区域的边界线上的像素点确认为干扰点,还用于将亮度值小于第二预设亮度阈值且不在任何对象区域的边界线上的像素点确认为干扰点。

更具体地,在所述整体数据识别平台中,所述平台还包括:像素点辨识设备,与所述亮度分析设备连接,用于接收所述最近邻插值图像中的各个干扰点,并对每一个干扰点执行以下操作:将每一个干扰点作为目标点,当所述目标点周围不存在亮度值大于第一预设亮度阈值或亮度值小于第二预设亮度阈值的像素点时,将所述目标点识别为处理点。

更具体地,在所述整体数据识别平台中,所述平台还包括:像素点处理设备,分别与所述亮度分析设备和所述像素点辨识设备连接,用于对所述最近邻插值图像中每一个处理点执行以下操作:确认所述处理点各个周围像素点是否为处理点,对所述各个周围像素点的各个亮度值执行加权中值滤波处理,以获得所述处理点的处理后亮度值;数据汇并设备,与所述像素点处理设备连接,用于接收各个处理点的各个处理后亮度值,以及接收各个非处理点的各个亮度值,基于各个处理点的各个处理后亮度值以及各个非处理点的各个亮度值获取所述最近邻插值图像对应的数据汇并图像;几何均值去噪设备,与所述数据汇并设备连接,用于接收所述数据汇并图像,对所述数据汇并图像执行几何均值去噪处理,以获得对应的几何均值去噪图像;第一分割设备,用于识别所述几何均值去噪图像中的各个对象,对所述各个对象的尺寸进行比较,以确定其中的最大尺寸的对象,并基于所述最大尺寸的对象的尺寸对所述几何均值去噪图像进行图像分割,以获得各个尺寸相同的图像分块,其中,所述最大尺寸的目标的尺寸越大,获得的图像分块越大;第二分割设备,分别与所述第一分割设备和所述几何均值去噪设备连接,对所述数据汇并图像执行与所述第一分割设备相同尺寸的图像分块处理,以获得各个尺寸相同的图像分块。

本发明至少具备以下几处关键的发明点:

(1)基于计算机库房内针对性处理后图像中每一个植物区域的像素点的绿色分量值实现对相应植物区域的枯萎度判断,进而实现对整个计算机库房的绿植枯萎度判断,为后续确定是否进行植物浇水提供整体参考数据;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于任成付,未经任成付许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910061148.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top