[发明专利]一种基于EcoG癫痫神经信号的解码方法和云端解码系统有效
申请号: | 201910049383.4 | 申请日: | 2019-01-18 |
公开(公告)号: | CN109924974B | 公开(公告)日: | 2022-02-08 |
发明(设计)人: | 秦迎梅;门聪;赵佳;车艳秋;韩春晓;薛彬 | 申请(专利权)人: | 天津职业技术师范大学(中国职业培训指导教师进修中心) |
主分类号: | A61B5/369 | 分类号: | A61B5/369;G06N3/06;G06K9/00;G06K9/62 |
代理公司: | 天津创智天诚知识产权代理事务所(普通合伙) 12214 | 代理人: | 李薇 |
地址: | 300222 天*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 ecog 癫痫 神经 信号 解码 方法 云端 系统 | ||
本发明公开了一种基于EcoG癫痫神经信号的解码方法和云端解码系统,所述解码方法,包括以下步骤:步骤1,提取原始颞叶EcoG时间序列信号,对其进行低通滤波后,检测和计算放电峰值,然后提取放电峰值附近的放电信号波形;步骤2,基于Haar小波分析方法,提取步骤1中所述的放电信号波形的小波系数作为特征;步骤3,基于SVM模型,对采集到的小波系数特征进行学习模型训练,再利用该学习模型进行预测,步骤4,返回模型预测结果。本发明可在智能医疗装置在采集到病人EcoG信号后,可通过网络api,访问该云端部署的癫痫EcoG识别模型,上传病人准实时EcoG信息,获取返回的分类结果。
技术领域
本发明涉及神经信号处理技术领域,特别是涉及一种基于EcoG癫痫神经信号的解码方法和云端解码系统。
背景技术
癫痫是一种典型的神经疾病,其临床特征表现为反复发作、大脑神经元过度异常放电等。有效的癫痫信号检测可以及早进行有效治疗,避免大脑产生不可逆的损伤。EcoG(脑皮层电图)通过探头直接在大脑皮层采集信息,精度高于传统的EEG方法,然而,目前的EcoG分析和解码算法并不完善。另外,在本地系统部署离线模型会导致模型更新困难,而且对智能装置的计算能力有较高要求不适合大规模商业推广,业界也缺乏完整的EcoG从分析到部署的解决方案。
发明内容
本发明的目的是针对现有技术中缺乏完善的分析、解码EcoG癫痫神经信号的方法,而提供一种基于EcoG癫痫神经信号的解码方法。
本发明的另一个目的是针对本地部署解码EcoG癫痫神经信号系统难以更新和推广的问题,而提供一种基于EcoG癫痫神经信号的云端解码系统,智能医疗装置在采集到病人EcoG信号后,可通过网络api,访问该云端部署的癫痫EcoG识别模型,上传病人准实时EcoG信息,获取返回的分类结果。从而解决癫痫EcoG在线检测问题。
为实现本发明的目的所采用的技术方案是:
本发明的一种基于EcoG癫痫神经信号的解码方法,包括以下步骤:
步骤1,提取待测试癫痫病人的原始颞叶EcoG时间序列信号,对其进行低通滤波后,检测和计算放电峰值,然后提取放电峰值附近的放电信号波形;
步骤2,基于Haar小波分析方法,提取步骤1中所述的放电信号波形的小波系数作为特征;
步骤3,利用所述SVM机器学习模型进行预测:第一阶段,基于所述小波系数特征识别放电信号波形所对应的神经元类别,把单个EcoG时间序列信号转换成多个神经元类别的时间序列信号,然后提取所述多个神经元类别的放电率;第二阶段,将得到的所述多个神经元类别的放电率输入到SVM机器学习模型,以预测出病人是否处于癫痫前状态;
步骤4,返回模型预测结果。
在上述技术方案中,所述SVM机器学习模型的训练通过以下步骤:
步骤1,提取学习样本的原始颞叶EcoG时间序列信号,对其进行低通滤波后,检测和计算放电峰值,然后提取放电峰值附近的放电信号波形;
步骤2,基于Haar小波分析方法,提取步骤1中所述的放电信号波形的小波系数作为特征;
步骤3,基于SVM模型,对采集到的小波系数特征进行学习模型训练:第一阶段,基于所述小波系数特征识别放电信号波形所对应的神经元类别,把单个EcoG时间序列信号转换成多个神经元类别的时间序列信号,然后提取所述多个神经元类别的放电率;第二阶段,利用所有学习样本得到的所述多个神经元类别的放电率训练SVM机器学习模型。
在上述技术方案中,所述SVM机器学习模型时采用的学习样本个数为5000-10000个。
在上述技术方案中,所述步骤1中原始颞叶EcoG时间序列信号由g.tec公司的g.HIamp脑机接口设备采集。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津职业技术师范大学(中国职业培训指导教师进修中心),未经天津职业技术师范大学(中国职业培训指导教师进修中心)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910049383.4/2.html,转载请声明来源钻瓜专利网。