[发明专利]移动边缘计算中联合任务调度的功率分配方法有效
申请号: | 201910026110.8 | 申请日: | 2019-01-11 |
公开(公告)号: | CN109767117B | 公开(公告)日: | 2021-05-18 |
发明(设计)人: | 邝祝芳;李林峰;陈清林 | 申请(专利权)人: | 中南林业科技大学 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 410004 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 移动 边缘 计算 联合 任务 调度 功率 分配 方法 | ||
1.移动边缘计算网络中联合任务调度的功率分配方法,其特征在于,包括以下步骤:
步骤1:计算每个任务在本地的执行时间,在边缘服务器的执行时间,任务卸载传输时间,边缘服务器执行耗能,本地执行耗能,
步骤2:基于流水车间作业调度的卸载调度方法求卸载任务集合,本地任务集合,以及卸载决策向量,
步骤3:根据步骤2求得的卸载任务集合,本地任务集合,以及卸载决策向量,求解卸载任务集合S中所有任务的卸载传输功率,
步骤4:比较Val_old和Val_new,如果新算出的目标值与上一次循环的目标值的差值大于门限值ε,即Val_new-Val_old>ε,则退出,否则重复步骤1-步骤3;
步骤1中的计算每个任务Ti在本地的执行时间在边缘服务器的执行时间任务卸载传输时间边缘服务器执行耗能本地执行耗能的步骤为:
S1-1任务Ti在边缘服务器的执行时间表示为:
其中di为任务Ti的数据量大小,单位为比特;ci为处理任务Ti每单位数据量所需CPU周期数,单位为周期/比特;
S1-2任务Ti的本地执行时间表示为:
其中fuser为边缘设备的CPU频率,单位为Hz;
S1-3任务Ti的卸载传输速度为:
其中,w为传输带宽,g0为路径损耗常数,L0为相对距离,L为实际距离,θ为路径损耗指数,N0为噪声功率谱密度,pi表示边缘设备卸载任务Ti到边缘服务器的传输功率;
S1-4任务Ti的卸载传输时间为:
S1-5任务Ti的卸载执行耗能为:
其中,δS为边缘服务器每CPU周期的耗能,单位为焦耳/周期,η1为任务执行能量权重,fser为边缘服务器的CPU频率,单位为Hz;
S1-6任务Ti的本地执行耗能为:
其中,δL为边缘设备每CPU周期耗能,单位为焦耳/周期;
步骤2基于流水车间作业调度的卸载调度方法求卸载决策向量,输入为所有任务集合G,边缘设备CPU频率fuser,边缘服务器CPU频率fser,输出为卸载任务集合S={S1,S2,...,SNs},本地任务集合L={L1,L2,...,LNl},卸载决策向量x,其中Ns表示卸载任务集合数,Nl表示本地任务集合数,基于流水车间作业调度的卸载调度方法的步骤如下:
S2-1对所有任务Ti进行分类,通过比较卸载传输时间和边缘服务器执行时间将卸载传输时间小于边缘服务器执行时间的任务加入数组P,将P中所有任务根据卸载传输时间升序排列,将卸载传输时间大于或等于边缘服务器执行时间的任务加入数组Q,将Q中所有任务根据边缘服务器执行时间降序排列,将数组Q加到数组P后面得到新的任务顺序[P Q];
S2-2设数组P和数组Q的初始下标值分别初始化为hP=1和hQ=1,从数组P中取出P[hP]放入卸载任务集合S,任务P[hP]的卸载决策变量hP=hP+1,从数组Q中取出Q[hQ]放入本地任务集合L,任务Q[hQ]的卸载决策变量hQ=hQ+1,
S2-3计算集合L中新加入的第一个任务k0=1的完成时间计算集合S中新加入的第一个任务k1=1的完成时间分别如式(7)和式(8)所示:
S2-4比较的大小,若说明本地任务集合L中新加入的任务k0先执行完,则执行步骤S2-4-1,否则执行步骤S2-4-2,以下两步循环执行直至跳出循环:
S2-4-1从数组Q中反复取任务Q[hQ]放入本地任务集合L,任务Q[hQ]的卸载决策变量hQ=hQ+1,k0=k0+1,根据式(9)计算新加入的任务k0的完成时间,比较与如果小于并且Q中还有任务,则继续执行步骤S2-4-1;如果大于并且Q中还有任务,则执行步骤S2-4-2;如果小于并且Q中没有任务了,则说明Q中任务被取完且L中所有任务完成时间仍小于集合S中所有任务的完成时间,则执行步骤S2-5,并将QN标志位置1,表示Q集合被提前分配完且P集合有剩余,
S2-4-2从数组P中反复取任务P[hP]放入卸载任务集合S,任务P[hP]的卸载决策变量hP=hP+1,k1=k1+1,根据式(10)计算新加入的任务k1的完成时间,比较与如果小于并且P中还有任务,则继续执行步骤S2-4-2;如果大于并且P中还有任务,则执行步骤S2-4-1;如果小于并且P中没有任务了,则说明P中任务被取完且S中所有任务完成时间仍小于集合L中所有任务的完成时间,则执行步骤S2-5,并将PN标志位置1,表示P集合被提前分配完且Q集合有剩余,
其中
S2-5检测标志位PN、QN,若QN=1,则集合P中任务仍有剩余,将集合P中所有任务存入集合M;若PN=1,则集合Q中任务仍有剩余,将集合Q中所有任务存入集合M;
S2-6取出集合M中的任务,根据公式(9)、(10)分别求出若该任务加入集合L、集合S中的完成时间
S2-7比较两者大小,若则将任务加入本地任务集合L,否则将任务加入卸载任务集合S;
S2-8反复执行步骤S2-6到步骤S2-7,直至M中任务被取完为止;
步骤3求解卸载任务集合S中所有任务的卸载传输功率,输入为所有卸载任务集合S={S1,S2,...,SNs},本地任务集合L={L1,L2,...,LNl},边缘设备CPU频率fuser,边缘服务器CPU频率fser,最大传输功率pmax,输出为卸载任务集合S,卸载任务Si传输功率采用凸优化的方法进行求解,基于凸优化的卸载任务传输功率的求解步骤如下:
S3-1联合任务调度和功率分配问题的目标是最小化能量消耗和所有任务的完成时间,优化问题的数学模型如(12)至(15)所示,记为原问题P1,其中式(12)为目标函数,式(13)至(15)为约束:
其中表示排序后所有卸载任务的完成时间,Ns表示所有卸载执行任务数,Nl表示本地执行任务数,为传输能耗,C=ηN0w/[g0(L0/L)θ],η为任务传输能量权重参数,为排序后第Si个卸载任务的传输速率的倒数,表示边缘服务器执行所有卸载任务的总能耗,表示边缘设备执行所有本地任务的总能耗,为排序后第Si个卸载任务的完成时间,为集合S中第Si个卸载任务的服务器处理时间,表示第Si个卸载任务分配最大传输功率pmax时的最大传输速率,为集合S中第S1至第Si个卸载任务的传输时间,计算公式如式(11)所示;
S3-2对步骤S3-1的联合优化问题P1进行问题转换,具体步骤包括:
S3-2-1引入拉格朗日乘子和构造的拉格朗日函数如式(16)所示:
S3-2-2根据步骤2求得卸载决策向量之后,可以确定卸载任务集合S,所有卸载任务Si的完成时间边缘服务器执行时间卸载任务执行能耗以及本地任务执行能耗故问题P1的最优解可通过求问题P2获得,如式(17)所示:
其中,为P2的目标式,且为凸函数,又目标式为凸函数之和,故目标式也为凸函数,为P2的约束条件;
S3-3根据式(12)计算当前给定卸载顺序和卸载任务最大传输功率时的Valnew_S值;
S3-4采用KKT条件求解转换的问题P2,求解步骤包括:
S3-4-1对目标式求最小值,由于目标式为凸函数,故可采用牛顿法对其进行求解,将求得的解代入约束条件(15),若求得的解中每一个值都满足约束条件(15),则就是目标函数的最优解,否则进入步骤S3-4-2,
S3-4-2目标式对求偏导,可求得拉格朗日乘子的负数,如式(18)所示:
S3-4-3判断求得的解是否满足约束条件(15),并对其进行分类,把满足式(15)的解记为把不满足式(15)的解记为集合中元素的个数记为Ndopt,集合中元素的个数记为Nnopt,将集合中的代入式(18)求得对应的拉格朗日乘子再将满足约束(15)的最优值代入(17),对应的拉格朗日乘子此时(17)变为以为变量的优化问题,如式(19)所示:
S3-4-4再次采用牛顿法对式(19)进行求解,求得的最优解,将和代入式(20),求得传输功率;
S3-5对所有卸载任务Si进行分类,通过比较卸载传输时间和边缘服务器执行时间将卸载传输时间小于边缘服务器执行时间的任务加入数组P,将P中所有任务根据卸载传输时间升序排列,将卸载传输时间大于或等于边缘服务器执行时间的任务加入数组Q,将Q中所有任务根据边缘服务器执行时间降序排列,将数组Q加到数组P后面得到新的任务顺序[P Q];
S3-6上一轮的目标值Valnew_S保存至Valold_S,用于比较两轮目标值,即Valold_S=Valnew_S,根据式(12)计算新的目标值Valnew_S;
S3-7重复执行步骤S3-3至步骤S3-5,直至不满足条件Valnew_S-Valold_S≤σ为止,此时将Val_new的值存入Val_old,目标值Valnew_S存入Val_new;
步骤4中比较Val_old和Val_new,如果新算出的目标值与上一次循环的目标值的差值大于门限值ε,即Val_new-Val_old>ε,则退出,否则重复步骤1-步骤3。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南林业科技大学,未经中南林业科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910026110.8/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理