[发明专利]基于YOLO的端到端三维物体检测方法有效

专利信息
申请号: 201811612659.7 申请日: 2018-12-27
公开(公告)号: CN109829476B 公开(公告)日: 2023-02-10
发明(设计)人: 沈大勇;翟天亨;王晓;刘胜 申请(专利权)人: 青岛中科慧畅信息科技有限公司
主分类号: G06V20/64 分类号: G06V20/64;G06V10/74;G06V10/774;G06V10/82;G06N3/04;G06N3/08
代理公司: 青岛华慧泽专利代理事务所(普通合伙) 37247 代理人: 马千会
地址: 266500 山东省青岛市高新技*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 yolo 端到端 三维 物体 检测 方法
【说明书】:

发明公开了一种基于YOLO的端到端三维物体检测方法。基于YOLO的端到端三维物体检测方法,包括以下步骤:对点云图像进行标注,获取标注后的点云图像数据集;构建基于YOLO的端到端三维物体检测网络模型;将点云图像数据集作为所述基于YOLO的端到端三维物体检测网络模型的训练样本和测试样本;将训练样本输入所述的基于YOLO的端到端三维物体检测网络模型中进行训练,达到训练指定次数或者Loss曲线不再下降且精度不再提高为止,将训练好的模型保存;然后将测试样本输入至保存好的网络模型中,网络即会输出三维物体检测结果。本发明的基于YOLO的端到端三维物体检测方法,比现有的三维物体检测方法更完善,训练难度更高。

技术领域

本发明涉及模式识别、机器学习及计算机视觉技术领域,特别涉及基于YOLO和FLN网络的物体检测方法。

背景技术

三维物体检测是模式识别和计算机视觉的一个重要研究领域,同时也是解决很多高层视觉任务的核心问题,物体检测的研究为高层视觉任务的解决奠定了基础。它在人们的日常生活中以及工业生产中有着广泛的应用,如智能视频监控、无人驾驶、智能机器人、智能交通以及增强现实等。

在过去的几年里,随着二维物体检测方法的日趋完善以及深度相机的普及,三维物体检测技术也获得了突飞猛进的发展。三维物体检测通过识别和定位三维物体,得到物体的三维信息,输出物体的三维包围盒来表示物体在真实世界中的位置。三维包围盒由其中心点坐标Cx,Cy,Cz、尺寸w,h,l以及方向角α,β,γ来决定。其中,Cx,Cy,Cz为相对于特征图网格的偏移,w,h,l为相对于anchor尺寸的偏移,α,β,γ为相对于anchor姿态的偏移。在已有的研究工作中,无人驾驶三维物体检测和室内环境的场景理解,其三维包围盒的自由度仅仅为7个(即Cx,Cy,Cz,w,h,l,α),因为车辆和室内环境中的物体只有航向角α,而没有俯仰角β和翻滚角γ。但在我们所研究的物体拣选和装卸领域,我们必须考虑物体精确的姿态,以达到与其对应的效果,因此我们需要考虑物体的俯仰角β和翻滚角γ,输出9个自由度的三维物体包围盒。

发明内容

为解决上述技术问题,本发明提供了基于YOLO的端到端的三维物体检测方法,以达到检测更完善,难度更高的目的。

为达到上述目的,本发明的采用的技术方案为:基于YOLO的端到端三维物体检测方法,包括以下步骤:

步骤一:对点云图像进行标注,获取标注后的点云图像数据集;

步骤二:构建基于YOLO的端到端三维物体检测网络模型;将点云图像数据集作为所述基于YOLO的端到端三维物体检测网络模型的训练样本和测试样本;

步骤三:将训练样本输入所述的基于YOLO的端到端三维物体检测网络模型中进行训练,达到训练指定次数或者Loss曲线不再下降且精度不再提高为止,将训练好的模型保存;然后将测试样本输入至保存好的网络模型中,网络即会输出三维物体检测结果。

进一步的,所述基于YOLO的端到端三维物体检测网络模型的构建方法包括以下步骤:

步骤一:构建基于FLN的三维特征学习网络,将点云数据集作为该网络的输入,将点云空间划分为体素,并且将每个体素内的点变换为表征形状信息的矢量表示;该空间被表示为稀疏4D张量;

步骤二:将稀疏4D张量调整为3D张量,保留宽和高尺度,将深度和通道数合并为新的通道数;

步骤三:将步骤二获得的3D张量作为基于YOLO的二维物体检测网络的输入,该网络基于偏移残差回归三维包围盒,直接回归包围盒的中心点坐标、长宽高、欧拉角9个自由度。回归方法是通过计算预测值与真实值之间的Loss值来不断调教网络使其输出值不断逼近真实值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛中科慧畅信息科技有限公司,未经青岛中科慧畅信息科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811612659.7/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top