[发明专利]一种基于卷积神经网络的人脸检测方法有效

专利信息
申请号: 201811572322.8 申请日: 2018-12-21
公开(公告)号: CN109815814B 公开(公告)日: 2023-01-24
发明(设计)人: 刘高华;王萌;苏寒松 申请(专利权)人: 天津大学
主分类号: G06V40/16 分类号: G06V40/16;G06V10/82;G06N3/04;G06N3/08
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 曹玉平
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 卷积 神经网络 检测 方法
【说明书】:

发明公开了一种基于卷积神经网络的人脸检测方法,包括步骤:步骤(1)、建立数据库;步骤(2)、对数据库中的图像进行;预处理;步骤(3)、训练深搭建好的度学习网络;步骤(4)、对训练结果进行测试,对于图片中出现的有遮挡的、不同角度的、侧面的人脸以及图片中较小的、较模糊的人脸的检测准确率较高,并且网络结构简单,迭代参数较少,训练时间较短。

技术领域

本发明属于计算机视觉、人工智能领域,特别涉及一种基于卷积神经网络的人脸检测方法。

背景技术

人脸检测是指在有人脸的图像中,确定出人脸所在的位置、大小的过程,是计算机视觉领域中重要的组成部分,也是进行人脸识别时预处理的关键步骤,其检测精度很大程度上也决定着人脸识别的精度,对后续的工作有着很大的影响,因此,对人脸检测的研究有着重大的意义和实用价值。

人脸检测在实际生活中有着广泛的应用:例如人份认证与安全防护、在关于人脸方面媒体与娱乐、手机、数码相机等电子产品中、以及图像检索层面等等。人脸检测方法大致可分为传统的检测方法(包括基于匹配模板的检测方法、基于距离的检测方法等)以及基于深度学习的检测方法。

近年来深度学习得到不断的完善和发展,无论是在分类还是回归任务上都得到了广泛的应用。基于深度学习的人脸检测方法也在不断发展,但对于目前的方法而言,以最常应用的MTCNN方法为例,其识别速度不够快,识别精度不够高,特别是对于图像、视频中有遮挡、或不同角度、侧面以及在画面中较小的人脸不易检测到。而作为人脸识别过程的预处理步骤,人脸检测的精度也在很大程度上影响着后续识别工作的精度,因此解决这些问题至关重要。

发明内容

基于现有技术,本发明提出了一种基于卷积神经网络的人脸检测方法,特别是涉及对画面中由于光照、遮挡的或者是处于侧面状态以及在画面中很小的人脸的检测,通过建立新的数据库,搭建卷积神经网络,并通过调整超参数,不断迭代训练网络,可以得到一个较好的检测效果,从而有效的对人脸进行检测。

本发明提出了一种基于卷积神经网络的人脸检测方法,该方法包括以下步骤:

一种基于卷积神经网络的人脸检测方法,该方法包括以下步骤:

步骤1、建立数据库获得图像数据进行预处理构建卷积神经网络;

步骤2、通过卷积神经网络中的图像特征分析模块对预处理数据进行四次迭代运算生成图像特征参数;

步骤3、通过卷积神经网络中的全连接层对图像特征参数运算生成图像一维向量;

步骤4、通过卷积神经网络中的分类层对图像一维向量进行分类和回归获得人脸图像的位置坐标。

所述步骤2图像特征分析模块对预处理数据过程,包括如下步骤:

步骤2.1所述图像特征分析模块的卷积层对预处理数据的权值与参数进行相卷积的方法提取图像特征;

步骤2.2、所述图像特征分析模块的激活函数层将图像特征运用ReLu函数进行非线性运算获得非线性特征图参数;

步骤2.3、所述图像特征分析模块的最大池化层对非线性特征图的参数进行降低处理。

所述步骤4中分类层对图像一维向量进行分类和回归过程:包括如下步骤。

步骤4.1,通过随机梯度下降法的优化方法对图像一维向量进行迭代权值,达到令损失函数不断的调整,从不断调整训练时的超参数以获得最佳训练结果,其中超参数包含:迭代次数、批次、最大迭代次数、学习率;

步骤4.2,分类过程选取的损失函数为将中心损失函数与softmax损失函数相结合

的方法,具体表达式为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811572322.8/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top