[发明专利]一种基于路网结构和目标特性的目标跟踪算法有效

专利信息
申请号: 201811382204.0 申请日: 2018-11-19
公开(公告)号: CN109671099B 公开(公告)日: 2022-07-29
发明(设计)人: 解梅;苏星霖;薛铮 申请(专利权)人: 电子科技大学
主分类号: G06T7/246 分类号: G06T7/246;G06T7/207;G06K9/62;G06V10/74
代理公司: 电子科技大学专利中心 51203 代理人: 李明光
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 路网 结构 目标 特性 跟踪 算法
【权利要求书】:

1.一种基于路网结构和目标特性的目标跟踪方法,其特征在于,包括以下步骤:

A.根据实际应用场景建立地理信息知识库和目标运动特征库;

步骤A的具体过程为:

为传感器监视区域建立基于道路网的地理信息知识库,建模信息包括道路拓扑结构、地形环境条件,以及地形环境对目标运动产生的约束能力,为各运动目标建立对不同道路、地形环境适应能力的目标运动特征库;

A-1.所述道路网建模为一系列道路片段和道路节点,道路节点被放置在道路属性发生变化的位置,以及不同道路的交叉点处,信息库分别保存各道路路段和道路节点的属性以及它们之间的连接关系;

A-2.所述道路和地形对目标运动的约束能力建模为各道路路段、道路节点和其他地形区域对应的目标运动模型集合;

A-3.所述目标运动特征库建模为目标的先验地形约束率和地形转移概率经验矩阵;

B.建立航迹表,航迹表记录每个航迹的状态估计、航迹的当前运动模型集、航迹的当前匹配地形类型、以及航迹的地形标记,其中,航迹的地形标记包括道路目标标记、节点目标标记和路外目标标记;

步骤B中,第k个扫描时刻航迹号为n的航迹状态记为Tn(k):

其中,Mn(k)为航迹n在当前时刻对应的运动模型集,和Pn(k)分别为当前时刻的状态估计和协方差估计;分别为模型r下的状态估计、协方差估计以及模型r在模型集Mn(k)中的模型概率,r为模型集Mn(k)中的模型;τn(k)为航迹的地形标记,an(k)为航迹的当前地形匹配;

C.每一仿真时刻,依据航迹当前地形标记的不同,对不同航迹进行不同的处理流程,每个处理流程包括目标与具体地形位置的匹配、模型集自适应判定以及多模型集的跟踪滤波;

C-1.采用预测不确定区域判别法进行目标与具体地形的匹配,包括是否在道路节点附近的判定、是否在道路节点的判定以及是否在道路上的判定,地形匹配后根据航迹的历史地形标记信息和当前地形匹配信息更新航迹的当前地形标记;

步骤C-1中的预测不确定区域判别法的具体过程为:

目标的预测不确定区域εn(k)定义为:

其中,x和y分别为横纵坐标变量,xp(k-)和yp(k-)分别为目标预测点的横纵坐标,(xp(k-),yp(k-))为由滤波器给出的k时刻目标的位置状态预测,

为k时刻目标状态预测协方差矩阵Pn(k-)的位置子矩阵,Pxx(k-)、Pxy(k-)、Pyx(k-)、Pyy(k-)分别为Pn(k-)的对应元素值,a为预测与确定区域的判决门限值;

步骤C-1中,

(1)标记为道路目标的处理流程:对于道路目标,首先判断目标是否到达道路临近节点,如果到达某个节点,进行节点模型集的添加和旧模型集的删除,同时将目标当前位置标记设为该节点;如果目标未到达临近节点,判断目标是否还在道路上,如果仍在道路上,无需模型集的改变直接进行跟踪滤波;如果目标不在道路上,接下来m个时刻对当前道路和当前道路的邻接道路和节点进行判断,如果连续m个时刻目标预测位置均不在道路或节点上,则判定该目标已驶离道路,进行路外模型集的添加和旧模型集的删除,同时将目标当前位置标记设为路外,其中,m为一个经验时刻值;

(2)标记为节点目标的处理流程:对于节点目标,首先判断目标是否还在节点,如果仍在节点上,无需模型集的改变直接进行跟踪滤波;如果目标不在节点,判断目标是否运行到相邻道路,如果运行到某条相邻道路,进行道路模型集的添加和旧模型集的删除,同时将目标当前位置标记设为该道路;如果目标不在节点也不在道路,接下来m个时刻对当前节点和当前节点邻接道路都进行判断,如果连续m个时刻目标预测位置均不在道路或节点上,则判定该目标已驶离道路,进行路外模型集的添加和旧模型集的删除,同时将目标当前位置标记设为路外;

(3)标记为路外目标的处理流程:对于路外目标,首先判断目标预测是否进入目标不可达区,如果连续c个时刻目标预测位置均在目标不可达区,直接对进行航迹终结,其中,c为经验时刻阈值;否则判断目标是否到达某个道路节点,如果目标到达某个节点或某段道路,进行节点或道路模型集的添加,但暂时不改变目标的当前位置标记,只有连续d个时刻目标预测位置均在节点或道路上,才判定该目标已到达当前节点或当前道路,并且将目标当前位置标记设为当前节点或当前道路,其中,d为一个经验时刻值,否则按照路外目标进行跟踪滤波;

步骤C-1中目标是否到达道路临近节点的具体的判定过程为:通过目标最大速度判断目标是否在道路节点附近,假设道路节点坐标为(xjunc,yjunc),判断下式是否成立:

若成立,说明目标在节点附近,其中vmax为目标最大速度,T为仿真间隔;

步骤C-1中目标是否在道路节点上的具体的判定过程为:假设道路节点坐标为(xjunc,yjunc),判断下式是否成立:

若成立,则预测目标到达节点(xjunc,yjunc)处,否则不在;其中αjunc为节点判决阈;

步骤C-1中目标是否在道路上的具体的判定过程为:假设道路端点为(x1,y1)和(x2,y2),目标预测位置即椭圆中心为(x0,y0),不确定区域椭圆区域为:

其中,k时刻目标状态预测协方差矩阵Pn(k-)的位置子矩阵,L11、L12、L21、L22分别为Pn(k-)的对应元素值,αroad为道路不确定区域判决阈值;

首先判断道路两个端点是否在不确定区域椭圆区域内,只要有一点满足条件,则可判定目标预测位置在道路上;如果都不满足,令L0=L12+L21,当x1=x2时,计算a1=L22,b1=L0(x1-x0),c1=L11(x1-x0)2road,判断Δ1=b12-4a1c1≥0是否成立,若不成立,退出判断;如果成立,则令k1=-b1/2a1+y0,继续判断(y1-k1)(y2-k1)≤0是否成立;若成立,说明道路段与不确定区域椭圆相交,否则不相交;当x1≠x2时,令a2=L11+L0A1+L22A12,b2=L0B+2L22A1A2,c2=L22A22-aroad,其中A1=(y2-y1)/(x2-x1),A2=(x2y1-x1y2)/(x2-x1)-y0+A1x0,判D2=b22-4a2c2≥0是否成立,若不成立,退出判断;如果成立,则令k2=-b2/2a2+x0,继续判断(x1-k2)(x2-k2)≤0是否成立;若成立,说明道路段与不确定区域椭圆相交,否则不相交;

C-2.根据目标匹配的地形位置激活该地形相应的先验目标运动模型集作为候选模型群,通过当前航迹目标的先验地形约束率、近期地形标记和地形转移概率经验矩阵修正当前模型转移马尔科夫矩阵;

步骤C-2的具体过程为:

C-2-1.候选模型群激活的策略:通过目标当前所在的道路地理环境决定,依靠预测道路信息和地理信息判断模型集的激活;

C-2-2.如果有候选模型群被激活,则更新当前目标运动模型集其中,为旧的当前运动模型集;

C-2-3.根据目标匹配的地形位置激活该地形相应的先验目标运动模型集作为候选模型群,通过当前航迹目标的先验地形约束率、近期地形标记和地形转移概率经验矩阵修正当前模型转移马尔科夫矩阵{pij},其中,1≤i≤|Mn(k-1)|,1≤j≤|Mn(k)|,|Mn(k-1)|为Mn(k-1)模型个数,|Mn(k)|为Mn(k)模型个数;

C-3.将旧的航迹当前运动模型集以及C-2激活的候选运动模型群组合,作为新的航迹当前运动模型集,以交互式多模型滤波器作为状态估计器估计目标状态,并分别计算旧当前运动模型群、新激活候选群的群模型概率,且由群模型切换判决法判决是否在下一时刻删除旧当前运动模型群和新激活候选群;

步骤C-3的具体过程为:C-3-1.借助旧的当前运动模型集和修正的当前模型转移马尔科夫矩阵{μi|j(k-1)},基于新的当前运动模型集Mn(k)运行VS-IMM,估计目标状态以及各模型概率;

所述VS-IMM估计目标状态以及各模型概率流程如下:

C-3-1-1.k-1时刻运动模型集为Mn(k-1),k时刻的运动模型集为Mn(k);

C-3-1-2.滤波器的重初始化:

根据k-1时刻各子模型的状态估计来计算k时刻各子滤波器Mj(k)的初始状态估计和初始协方差矩阵:

其中,为k-1时刻Mn(k-1)模型集模型i对应的状态估计,μi|j(k-1)为k时刻模型为j的情况下k-1时刻模型为i的条件概率,Pi(k-1)为k-1时刻Mn(k-1)模型集模型i对应的状态估计协方差矩阵;

C-3-1-3.各子模型独立滤波,并计算模型似然值,似然值为:

其中,vj(k)为量测新息,Sj(k)为新息协方差矩阵;

C-3-1-4.计算模型概率:模型j的概率更新为:

其中,

C-3-1-5.计算融合结果和协方差:

其中,Pj(k)和μj(k)分别为k时刻模型j下的状态估计、协方差估计及模型j在模型集Mn(k)中的模型概率;

C-3-2.分别计算旧当前运动模型集新激活候选群的群模型概率;当满足时,候选模型群在下一时刻终止;当满足时,当前起作用的模型群在下一时刻终止;其中,t1和t2为模型终止判决阈值,为新激活候选群的模型概率和,为旧当前运动模型集的模型概率和。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811382204.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top