[发明专利]基于大数据科学和动态权重调整的课程推荐方法及系统有效

专利信息
申请号: 201811376466.6 申请日: 2018-11-19
公开(公告)号: CN109582864B 公开(公告)日: 2020-11-10
发明(设计)人: 黄昌勤;张捷;朱佳;赵美华 申请(专利权)人: 华南师范大学
主分类号: G06F16/9535 分类号: G06F16/9535;G06N3/08
代理公司: 广州嘉权专利商标事务所有限公司 44205 代理人: 胡辉
地址: 510631 广东省广州市天*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 科学 动态 权重 调整 课程 推荐 方法 系统
【说明书】:

发明公开了基于大数据科学和动态权重调整的课程推荐方法及系统,方法包括:根据用户对课程的评分,生成用户课程矩阵;根据用户课程矩阵,生成学生的偏好信息;根据用户课程矩阵和学生的偏好信息,构建约束模型和独立评分模型;根据约束模型和独立评分模型,基于动态权重调整方法生成课程评分预测值;根据课程评分预测值进行课程推荐。本发明通过约束模型和独立评分模型来预测课程的评分,能够同时考虑全局信息和局部信息,且可以对预测的结果根据实际情况进行调整,效果稳定;另外,本发明在预测课程评分的时候,还采用了动态权重调整方法,大大提高了预测结果的准确性,可广泛应用于深度学习技术领域。

技术领域

本发明涉及深度学习技术领域,尤其是基于大数据科学和动态权重调整的课程推荐方法及系统。

背景技术

当今社会,信息与通讯技术的进步以及普及,对教育环境产生了巨大的影响和发展,在线教育系统作为其中发展最迅猛、扩散速度最快之一的领域,广泛地影响着我们的生活。随着在线教育系统变得普及,系统上的学生和课程的数量正在快速增长,那么如何让学生更好地挑选更感兴趣的、更适应学生特点的、知识量足、知识面全面的课程,已成为当今广受争议的问题:课程推荐问题、课程路径推荐问题。为了解决该问题,一个设计合理、效率保证且能够从大量的数据中根据学生的具体情况来推荐课程和课程路径的系统是必不可少的。

在此大前提下,各种课程和课程路径推荐系统层次不穷。这些系统使用的方法大致可以这么分为两类:基于历史数据的推荐方法、基于内容的推荐方法。其中,基于历史数据的推荐方法:通过对历史数据进行过滤、处理来直接对用户进行课程的推荐,但同时缺少了对实际情况的考虑,对数据量的要求也比较大;基于内容的推荐方法:通过对用户的观察、测试、收集数据等方法把具体某个用户的特征保存在一个对应的数据集中,然后通过领域的方法和建模的方法来对用户进行课程的推荐,但其忽略了历史数据的价值,同时对噪声比较敏感;有一小部分的推荐系统同时考虑了基于历史数据的方法和基于内容的方法,但是其多数采用统计的方法或者只是把其中一者作为参考来设计系统,难以在数据量庞大时达到较好的效果,同时对数据的处理也相当困难;还有一部分系统使用了大数据的方法来实现,但是其使用的方法和模型过于传统、简单,细节上存在着漏洞和不足,没有充分地利用大数据科学的优势,效果只能说是差强人意,因此也并不被广泛认可。此外,上述推荐系统还面临两个困境:难以同时考虑全局信息和局部信息、难以对预测的结果根据实际情况进行调整。目前基于大数据技术的模型主要包括:BP神经网络模型(Back PropagationNeural Networks)和决策树模型(Decision Tree),决策树模型运用概率的思想来净现值的期望值大于等于零的概率,但其难以解决系统的课程和用户的数量和性质会动态变化且变化速度大导致模型不精准的问题;BP神经网络运用深度学习的思想来实现目标值的预测,但其学习速度慢且输入的参数没有一个系统的理论方法,预测效果不稳定。

发明内容

为解决上述技术问题,本发明的目的在于:提供一种准确度高且效果稳定的,基于大数据科学和动态权重调整的课程推荐方法及系统。

本发明一方面所采取的技术方案为:

基于大数据科学和动态权重调整的课程推荐方法,包括以下步骤:

根据用户对课程的评分,生成用户课程矩阵;

根据用户课程矩阵,生成学生的偏好信息;

根据用户课程矩阵和学生的偏好信息,构建约束模型和独立评分模型;

根据约束模型和独立评分模型,基于动态权重调整方法生成课程评分预测值;

根据课程评分预测值进行课程推荐。

进一步,所述根据用户课程矩阵,生成学生的偏好信息这一步骤,包括以下步骤:

对用户课程矩阵进行运算,生成第一结果,所述第一结果包括课程共存矩阵和用户共存矩阵;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南师范大学,未经华南师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811376466.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top