[发明专利]一种基于随机线性插值的行人再识别数据增强方法有效

专利信息
申请号: 201811268388.8 申请日: 2018-10-29
公开(公告)号: CN109635634B 公开(公告)日: 2023-03-31
发明(设计)人: 郭军;李智;陈峰;许鹏飞;刘宝英;孟宪佳;常晓军 申请(专利权)人: 西北大学
主分类号: G06V40/10 分类号: G06V40/10;G06V20/52;G06V10/774;G06V10/82;G06N3/0464;G06N3/048;G06N3/08
代理公司: 西安恒泰知识产权代理事务所 61216 代理人: 李婷
地址: 710069 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 随机 线性插值 行人 识别 数据 增强 方法
【权利要求书】:

1.一种基于随机线性插值的行人再识别数据增强方法,其特征在于,包括以下步骤:

步骤1,通过监控系统捉视角不交叉的不同相机下同一个行人的照片,再将不同行人照片中行人图像分别截取出来,构成该行人的图像数据集;利用不同行人的图像数据集构建行人再识别数据集,并将其划分为训练集和测试集;

步骤2,初始化随机线性插值的插值强度参数,设置训练集中需要被增强的样本比例,将待增强的样本与训练集中的随机一个样本进行插值操作,生成新的样本,然后对待增强的样本进行重新标记;

步骤2.1,首先通过贝塔分布Beta(α,β)生成随机线性插值的强度μ,这里α=β是贝塔分布的参数;

步骤2.2,将训练集平均划分成k个样本的批训练数据,设定需要被数据增强的样本比例γ,然后利用下式进行插值操作,得到新的样本的特征,从而得到新的样本;

其中,表示批训练数据生成新的样本的特征,xa表示批训练数据中的待增强样本的特征,xt表示批训练数据中任意一个样本的特征,μ表示的是随机线性插值的插值强度,{R,G,B}表示样本的像素特征,共有三个颜色通道:红,绿,蓝;

步骤2.3,利用步骤2.1中的插值强度μ,对批训练数据中的待增强的样本进行重新标记,得到增强样本的双标记,如式2所示:

其中,表示混合了待增强的样本a和批训练数据中任意样本t的标签,同时具备了两个样本的标签信息;ya表示待增强的样本a的标签,yt表示所述任意样本t的标签;

步骤3,将生成的新的样本和训练集中的样本混合作为输入层,使用卷积神经网络模型进行训练,设定训练代数,当模型的损失函数收敛或者达到训练代数,则进行步骤4,否则更新步骤3;

步骤4,步骤3中训练好的模型获得了不同相机拍摄的照片中行人图像的映射关系,利用训练好的模型对测试集中的行人图像进行匹配预测,得到识别的结果。

2.如权利要求1所述的基于随机线性插值的行人再识别数据增强方法,其特征在于,所述的基于随机线性插值的行人再识别数据增强方法,还包括:

将测试集的样本放入到步骤3中得到的模型中训练,得到相应的预测向量,设定评估参数p的值,将预测向量中最大的p个值对应的类别和测试集中待测样本的真实类别进行比较,如果待测样本的真实类别存在于预测的p个类别中,则统计预测对的样本数增加1;

统计测试集中总共的预测正确的样本数T,以及总的测试集样本数N,计算Rank-p准确率:

根据计算出来的Rank-p准确率,使用格点搜索的方法对所述的卷积神经网络模型的参数μ、γ进行调节,使得最终得到的模型性能达到最好。

3.如权利要求1所述的基于随机线性插值的行人再识别数据增强方法,其特征在于,步骤3所述的用卷积神经网络模型进行训练时,记录每一次训练时的损失函数值,如式3所示:

loss=μ·(ypred-ya)+(1-μ)·(ypred-yt) 式3

其中loss表示损失函数值,ypred表示样本a的预测标签,ya表示样本a的真实标签,yt表示样本t的真实标签。

4.如权利要求1所述的基于随机线性插值的行人再识别数据增强方法,其特征在于,所述的卷积神经网络模型,是指:

所述的卷积神经网络采用改进的ResNet50网络,具体是在ResNet50网络的基础上,移除原有的全连接层,将全连接层替换为线性层,在线性层之后增加一个BatchNormalization层;除此之外,使用Leaky ReLU作为线性层和Batch Normalization层的激活函数,设定Leaky ReLU的负斜率参数为0.01,设定卷积神经网络的dropout的参数为0.5;在训练时,定训练代数参数为60,初始的学习率为0.001,并且网络的初始权重使用了在ImageNet上的训练参数。

5.如权利要求1所述的基于随机线性插值的行人再识别数据增强方法,其特征在于,所述的样本比例γ的取值范围为[0.3,0.5]。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811268388.8/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top