[发明专利]一种基于编码网络微调的图像能见度检测方法有效

专利信息
申请号: 201811249423.1 申请日: 2018-10-25
公开(公告)号: CN109214470B 公开(公告)日: 2020-11-03
发明(设计)人: 李骞;唐绍恩;马强 申请(专利权)人: 中国人民解放军国防科技大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/34;G06N3/08
代理公司: 江苏圣典律师事务所 32237 代理人: 胡建华;于瀚文
地址: 410005 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 编码 网络 微调 图像 能见度 检测 方法
【说明书】:

发明公开了一种基于编码网络微调的图像能见度检测方法,包括:训练能见度检测模型:对训练集图像划分区域,并通过修改后的网络编码,提取各子区域图像特征向量,利用各子区域图像特征向量和能见度标注值训练支持向量回归机,并估计子区域能见度值,通过微调后的网络对各子区域图像重新编码,利用新的各子区域图像特征向量和能见度标注值重新训练支持向量回归机,得到新的能见度与特征向量的回归模型。测试能见度检测模型:对测试图像划分区域,利用微调后的深度神经网络进行编码,提取各子区域图像特征向量,利用子区域图像特征和重新训练的回归模型计算子区域能见度估计值,按权重融合各子区域能见度估计值,得到整幅图像能见度检测值。

技术领域

本发明属于大气探测中地面气象观测技术领域,尤其涉及一种基于编码网络微调的图像能见度检测方法。

背景技术

能见度是指在当时天气下,正常人能从背景中识别出目标物的最大距离,是反映大气透明程度的一个重要指标。目前能见度测量方法主要包括目测法、器测法和基于图像视频的测量方法等。目测法观测值受观测人员主观经验、视力情况和目标物选取影响较大。器测法主要利用透射式能见度仪或散射式能见度仪进行测量,然而检测仪器均以采样空间数据代表大气全程范围的能见度,检测精度易受采样空间的大气质量影响,且普遍比较昂贵,难以满足能见度检测的实际应用需求。

基于图像视频的能见度检测方法主要分为模型驱动和数据驱动两类。模型驱动法结合能见度定义,通过分析光传播过程中大气衰减对图像成像的影响,建立光在大气中传播的物理模型,估计模型中参数,以此反推能见度。模型驱动法的估计精度与物理模型定义、参数设置紧密相关,然而大气中影响光传播的悬浮粒子种类较多,且粒子分布不均匀,因此光传播物理模型通常难以准确定义。数据驱动法主要根据低能见度天气对图像造成的模糊和退化效果,从图像或视频中提取有效的视觉特征,并通过累积的历史数据训练特征与能见度的关系模型,以计算能见度。现有数据驱动法提取一种或多种明确的图像特征进行能见度估计,然而明确的图像特征不能完全表征图像所有的潜在信息,导致图像信息利用不充分,无法进一步提高检测精度。

发明内容

发明目的:本发明所要解决的技术问题是针对现有基于图像的能见度检测方法对图像信息利用不充分,鲁棒性差,提出了一种基于编码网络微调的能见度检测模型,实现利用摄像机对能见度的检测,包括以下步骤:

步骤1,训练能见度检测模型:输入训练集图像,对训练集中每幅图像进行子区域图像划分;利用全局池化层替换预训练网络DIQaM-NR(无参考图像质量评估领域的深度神经网络)末端的池化层,利用替换修改后的网络对各子区域图像编码,提取各子区域图像对应的N(此处取值为512)维特征向量;利用各子区域图像特征向量和能见度标注值训练支持向量回归机,并估计子区域能见度值;根据支持向量误差分析计算各子区域融合权重,并按权重融合子区域能见度估计值,得到整幅图像能见度估计值;结合估计结果对深度神经网络进行微调;通过微调后的网络对各子区域图像重新编码,利用新的各子区域图像特征向量和能见度标注值重新训练支持向量回归机,得到新的能见度与特征向量的回归模型;

步骤2,测试能见度检测模型:输入测试图像,对测试图像进行子区域图像划分;利用微调后的深度神经网络进行编码,提取各子区域图像对应的N维特征向量;将各子区域图像特征向量代入步骤1最后训练的新回归模型,得到各子区域能见度估计值;计算各子区域融合权重,按权重融合各子区域能见度估计值,输出整幅图像能见度检测值。

步骤1包括以下步骤:

步骤1-1,输入训练集图像,对训练集中每幅图像进行子区域图像划分:将训练集中每幅图像划分为RegionNum个子区域,每个子区域分辨率为224×224,其中,ImageWidth表示训练集图像的宽度,ImageHeight表示训练集图像的高度,表示向上取整;子区域Region(i,j)的左上角像素横坐标和纵坐标分别为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科技大学,未经中国人民解放军国防科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811249423.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top