[发明专利]基于高级特征的人脸修复方法有效
申请号: | 201811244307.0 | 申请日: | 2018-10-24 |
公开(公告)号: | CN109360170B | 公开(公告)日: | 2020-08-14 |
发明(设计)人: | 刘瑞军;李善玺;师于茜;王向上 | 申请(专利权)人: | 北京工商大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 北京晟睿智杰知识产权代理事务所(特殊普通合伙) 11603 | 代理人: | 于淼 |
地址: | 100048*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 高级 特征 修复 方法 | ||
本发明公开了一种基于高级特征的人脸修复方法,包括:获取破损人脸图像;将所述破损人脸图像输出为两个呈轴对称的图像矩阵;在每个所述图像矩阵中确定破损区域;检测与所述破损区域相对称的区域是否破损;如果是,提取所述破损人脸图像的高级特征;获取参考数据集;从所述参考数据集中获取与所述破损人脸图像的高级特征相同的人脸图像,作为参考人脸图像;根据所述参考数据集中的人脸图像模拟得到模拟人脸图像;在所述模拟人脸图像中提取所述破损区域对应的数据,得到初始修复数据;对所述初始修复数据进行优化,得到修复数据;采用所述修复数据对所述破损人脸图像进行修复,生成修复完成的人脸图像。通过本发明,提高了破损人脸图像的修复效果。
技术领域
本发明属于图像处理技术领域,更具体地,涉及一种基于高级特征的人脸修复方法。
背景技术
图像修补是数字图像处理研究的重要部分,其目的是根据未破损部分的信息修补已经破坏或损失的部分。图像修补主要分为两大类图像修复和图像补全,图像修复主要是针对图中的噪音或者是除噪音之外的其他痕迹对图像造成的损坏进行图像的修复,主要的工作体现在纠正虚假或损坏数据或者移除不需要的对象,图像补全主要是针对图像的缺失内容进行补全。
图像修补主要分为内容和纹理的修补,根据破损周围的图像学习到破损区域的纹理信息,然后根据训练人脸数据集生成的模型联想出损坏或缺失部分的内容信息,充分结合纹理信息和内容信息使修复后的图像更加逼真或者达到原图的视觉效果。图像修补可以很好的应用到图像编辑和修复破损照片区域,传统的图像修补方法一般是采用对称原则来实现修补的,例如当一张人脸图像的右眼区域破损时可以参考左眼来修复右眼,当一张人脸图像的左半嘴角破损时可以参考右半嘴角来修复,但是当图像大面积缺失时现有的方法不能得到较好的修补效果。因此,修复大面积缺失的图像(主要的研究对象是人脸图像)仍是一个具有挑战性的研究课题。
发明内容
有鉴于此,本发明提供了一种基于高级特征的人脸修复方法,以提高破损人脸图像的修复效果。
一种基于高级特征的人脸修复方法,包括:
获取破损人脸图像;
将所述破损人脸图像输出为两个呈轴对称的图像矩阵;
在每个所述图像矩阵中确定破损区域;
检测与所述破损区域相对称的区域是否破损;
如果检测到与所述破损区域相对称的区域破损,提取所述破损人脸图像的高级特征,其中,所述高级特征为人脸图像所对应的人的特征;
获取参考数据集,其中,所述参考数据集包括多个人脸图像的数据,每个所述人脸图像的数据包括人脸图像和所述高级特征;
从所述参考数据集中获取与所述破损人脸图像的高级特征相同的人脸图像,作为参考人脸图像;
根据所述参考数据集中的人脸图像模拟得到模拟人脸图像;
在所述模拟人脸图像中提取所述破损区域对应的数据,得到初始修复数据;
根据所述参考人脸图像以及所述破损人脸图像对所述初始修复数据进行优化,得到修复数据;
采用所述修复数据对所述破损人脸图像进行修复,生成修复完成的人脸图像。
优选地,如果检测到与所述破损区域相对称的区域未破损,则通过对称算法对所述破损人脸图像进行修复;
所述对称算法为:v=R(u);
其中,所述v为损坏像素点,R为映射规则,u为映射参考点。
优选地,所述高级特征包括:肤色、表情和年龄。
优选地,所述表情包括以下任意一种或多种:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工商大学,未经北京工商大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811244307.0/2.html,转载请声明来源钻瓜专利网。