[发明专利]红外与可见光融合的汽车夜视抗晕光图像分割及评价方法有效

专利信息
申请号: 201811147819.5 申请日: 2018-09-29
公开(公告)号: CN109166131B 公开(公告)日: 2021-06-29
发明(设计)人: 郭全民;柴改霞;高嵩;田英侠;杨建华;马超;周芸 申请(专利权)人: 西安工业大学
主分类号: G06T7/11 分类号: G06T7/11;G06T5/00;G06T7/136
代理公司: 西安新思维专利商标事务所有限公司 61114 代理人: 黄秦芳
地址: 710032 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 红外 可见光 融合 汽车 夜视抗晕光 图像 分割 评价 方法
【说明书】:

发明提出了一种红外与可见光融合的汽车夜视抗晕光图像的评价方法,该方法通过设计的自适应迭代阈值法根据可见光图像的晕光程度自动确定可见光灰度图像的晕光临界灰度值,并将融合图像自动分为晕光区与非晕光区;针对晕光区与非晕光区图像处理目标的不同,在晕光区设计了晕光消除度用于评价融合图像晕光消除的效果,在非晕光区从多个角度评价融合图像色彩细节信息的增强效果。该方法解决了现有红外与可见光融合图像评价方法用于评价汽车夜视抗晕光融合图像时,评价结果与人眼视觉效果不一致、融合图像晕光消除越彻底评价结果反而越差的问题。

技术领域

本发明属于汽车抗晕光技术领域,尤其涉及一种红外与可见光融合的汽车夜视抗晕光图像分割方法及分割后图像评价方法,该评价方法用于评价夜间抗晕光融合图像的晕光消除程度和图像细节质量,适用于评判红外与可见光结合的汽车抗晕光图像融合算法。

背景技术

结合红外图像无晕光、可见光图像色彩细节信息丰富优点的图像融合抗晕光技术,为解决夜间行车的晕光问题提供了一种新途径,具有较好的应用前景。

为了评判汽车夜视抗晕光融合图像的晕光消除程度和细节信息增强效果,以及评判不同图像融合算法的优劣,客观评价方法的评判结果应与人眼视觉效果一致,但目前常用的红外与可见光的融合图像评价方法,都不适合特定的夜视抗晕光应用场景。

夜间行车消除晕光的问题,实质上是低照度强光源逆光拍摄图像的消晕光问题,与一般夜视红外与可见光图像融合聚焦于低照度场景下增强图像的纹理细节信息不同,红外与可见光融合的汽车夜视抗晕光图像融合的目的首要是消除高亮的晕光,再次是增强暗处的色彩细节信息。因此,汽车夜视抗晕光融合图像与一般红外与可见光融合图像相比存在三点显著差异:1)消除晕光后的融合图像与原始图像不同,且晕光消除越彻底差异越大;2)原始图像晕光部位的光晕梯度及明暗边界十分明显,随着晕光消除越彻底,融合图像原晕光部位的梯度、边界越不明显;3)晕光部位的高亮度会造成其它部位的亮度更暗,融合图像的暗处细节信息更不易观察。

由于汽车夜视抗晕光融合图像的特殊性,现有红外与可见光融合图像评价方法的评价结果不能准确、客观地反映融合图像的晕光消除、色彩细节增强的效果,甚至出现晕光消除越彻底,融合图像评价指标结果越差,与人眼视觉效果不一致的现象。

现有的无参考图像评价方法,通过客观指标对融合图像自身质量进行评价。融合图像消除晕光后,晕光部位的高亮度信息被剔除,会导致反映融合图像平均亮度的均值降低;融合图像晕光消除越彻底,明暗对比度越低,晕光处的纹理细节反差越少,导致标准差和边缘强度降低。上述指标的评价结果都与融合图像的晕光消除程度相反,故该类方法不能真实地反映汽车夜视抗晕光融合图像的质量。

全参考图像评价方法从融合图像对原始图像的信息保留程度方面评价融合图像的质量。例如交叉熵,在融合图像非晕光部位,该指标能很好的反映出对原始图像细节信息的保留程度,但在晕光部位,融合图像晕光消除越彻底,晕光细节信息保留越少,与可见光图像相似程度越低,故评价结果不能真实反映融合图像的质量,这类方法也不适用于评价汽车夜视抗晕光融合图像。

基于视觉系统的评价方法从人眼视觉效果方面评价融合图像的质量。例如边缘保持度,在融合图像非晕光部位,该指标能很好的反映出对原始图像边缘、轮廓等重要信息的保留程度,但在晕光部位,晕光消除越彻底,晕光边缘、轮廓等信息保留越少,该指标的评价结果与晕光消除程度相反。结构相似度指标也存在同样的问题,因此,这类方法同样不适用于评价汽车夜视抗晕光融合图像。

综上所述,现有的几类红外与可见光的融合图像评价方法,都无法真实反映汽车夜视抗晕光融合图像的质量,为此亟需提出一种适合红外与可见光融合的汽车夜视抗晕光图像的评价方法。

发明内容

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安工业大学,未经西安工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811147819.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top