[发明专利]视频监控中基于图像概念网络的行人不安全行为检测方法有效

专利信息
申请号: 201811132864.3 申请日: 2018-09-27
公开(公告)号: CN109376610B 公开(公告)日: 2022-03-29
发明(设计)人: 李群;肖甫;徐鼎;周剑 申请(专利权)人: 南京邮电大学
主分类号: G06V40/20 分类号: G06V40/20;G06V20/40;G06V20/52;G06V10/764;G06V10/80;G06K9/62;G06F40/30
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 彭雄
地址: 210003 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 视频 监控 基于 图像 概念 网络 行人 不安全 行为 检测 方法
【权利要求书】:

1.一种视频监控中基于图像概念网络的行人不安全行为检测方法,其特征在于:由事先获取的概念词汇表构建基于词激活力的语义概念网络,然后应用社会网络分析方法挖掘概念共现相关提取场景语义概念,进一步实现场景概念检测;另一方面,应用概念推理模型提取视觉一致语义概念特征;最后,应用场景语义概念优化视觉一致语义概念,并应用分类器完成基于图像识别的行人不安全行为检测;包括以下步骤:

步骤1,给定训练集,提取每幅图像的语义概念,根据其在图像中的位置信息组成句子,同类图像概念构成的句子集合为一个文本,由此构建语义概念词汇表;

根据给定训练集和查询图提取图像的视觉特征,应用概念推理模型提取视觉一致语义概念,同时根据语义概念词汇表建立个体概念模型,进而提取图像描述子;

步骤2,基于词激活力的语义概念网络构建;基于词激活力的概念网络建模:由语义概念词汇表通过网络结构对语义概念网络建模,应用词激活力转化为图像语义概念激活力,构建基于词激活力的语义概念网络,并应用社会网络分析方法挖掘图像语义概念的共现相关,提取场景语义概念描述子;

基于词激活力的语义概念网络构建包括以下步骤:

步骤21,给定语义概念词汇表中的一对语义概念词汇,记为词汇一cl和词汇二ck,首先计算得出它们各自的词汇一频率和词汇二频率以及它们的共现频率它们的激活力为:

其中,是词汇一cl和词汇二ck共生频率中词汇一cl对词汇二ck前向距离的平均值;

步骤22,构建网络结构S=(N,E,W),其中N表示节点集,E表示连接节点的边缘集,且每个边缘对应其重要性被分配给一个大于零的权重W;对应于网络结构事先建立的概念词汇表C,概念网络则由每个概念c关联网络结构S中的节点n构建;

步骤23,网络边缘权重由谷歌距离NGD和激活力二次加权获取,其中谷歌距离NGD用于评估全局语义概念共现,词激活力用于捕捉局部共现活跃性属性;两两成对的词汇一cl和词汇二ck之间的全局语义共现依据谷歌距离NGD计算为:

其中,S(cl)表示包含词汇一cl的页面数量,S(ck)表示包含词汇二ck的页面数量,S(cl,ck)表示同时包含词汇一cl和词汇二ck的页面数量,Ω表示谷歌所搜索的总页面数;

步骤24,以网络的加权边缘表示各节点之间的共现相关性,以快速模块式最大化算法作为网络中的分层社区检测共现模式,实现场景语义概念描述子的提取;

步骤3,融合个体语义概念特征和场景语义概念特征获取融合特征,把融合特征或者优化后的图像描述子输入到线性SVM分类器对分类器进行训练,利用训练好的分类器实现行人不安全行为检测从而给定不安全行为标识;

融合个体语义概念特征和场景语义概念特征获取融合特征的方法:

设个体概念概率特征为Fc,场景概念概率特征为Fs,获取融合特征F=[F1 F2],其中F1=W1Fc,F2=W2Fs,则目标函数定义为:

τ12=1,τ1≥0,τ2≥0,

其中,R1(W1,F1)、R2(W2,F2)为重构函数,C1、C2为特征相关项,g(F1)、g(F2)为惩罚函数,W1,W212,λ,λ1,λ2为权重系数,为惩罚因子。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811132864.3/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top