[发明专利]一种Mo2 有效
| 申请号: | 201811092203.2 | 申请日: | 2018-09-19 |
| 公开(公告)号: | CN109148869B | 公开(公告)日: | 2020-06-30 |
| 发明(设计)人: | 王俊;侯传信;党锋;赵兰玲;黄启顺;李佳佳;王煜 | 申请(专利权)人: | 山东大学 |
| 主分类号: | H01M4/36 | 分类号: | H01M4/36;H01M4/48;H01M4/62;H01M10/0525 |
| 代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 郑平 |
| 地址: | 250061 山东*** | 国省代码: | 山东;37 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 mo base sub | ||
本发明公开了一种Mo2C/MoO2/C复合电极材料及其制备方法和应用。该复合材料具有类似三明治结构,由碳基体形成的三明治结构可以作为有效的缓冲基质,缓解充放电过程中电极体积变化,提高电池循环稳定性;纳米化的MoO2颗粒可增加活性物质的活性位点数,提高电极材料的电化学性能;通过调控碳化温度,在MoO2颗粒生长出Mo2C颗粒,进一步提高电极材料的导电性,电池的循环性能明显改善。采用该仿生法制备的电极材料用于成品电池无需添加导电助剂,简化生产工艺,节约成本,有利于其作为锂离子电池负极材料的商业化应用;同时,该制备方法绿色环保,易于规模化生产。由本发明制备的Mo2C/MoO2/C锂离子电池负极材料具有高的放电比容量和优异的循环稳定性等优良的综合电化学性能。
技术领域
本发明涉及Mo2C/MoO2/C复合物电极材料及其制备方法,以及用制备的电极材料在锂离子电池的应用,属于新能源领域。
背景技术
因其工作电压高、能量密度高、能量效率高、循环寿命长、无记忆效应、不含有毒物质且可以大电流充放电等特性,锂离子电池作为一种高性能绿色供电体系备受关注,被誉为“绿色电源”。现阶段,我国环境问题日益严峻,开采传统能源过程中引发水土流失、土地荒漠化等,传统能源使用过程中引发的温室效应、酸雨、雾霾等因素都极大的威胁着人类的生存环境,广泛的使用锂离子电池可以有效的改善这种状况。同时,为了保护地球上的有限资源,应尽可能的扩大资源种类,选用储量丰富及有利于环保的资源来研发制备绿色、性能更加优异的电极材料,提高电池综合电化学性能,具有重大的现实意义和广阔发展前景。锂离子电池成为我国必须发展的电池品种。其中,研发一种比目前商业化石墨材料更高比容量的锂离子电池负极材料更是迫在眉睫。
四氧化三钴、四氧化三铁、二氧化锡、氧化镍、四氧化三锰和氧化亚锰等过渡金属氧化物由于其高的理论比容量,已作为负极材料被广大科研研究者深入探究。在种类繁多的过渡金属氧化物材料中,二氧化钼具高的理论比容量(838mAh g-1)、良好的电子导电率以及可靠的离子传输特性,成为同时具有高能量密度与高能量效率的锂离子电池负极材料的潜在替换材料。然而,二氧化钼作为传统的过渡金属氧化物,在充放电过程中剧烈的体积变化会导致颗粒的粉化,既而影响循环性能。二氧化钼的导电率仍需要提高来优化其倍率性能。上述提及的不足,将阻碍二氧化钼作为锂离子电池负极材料的商业化应用。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811092203.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:用于锂电池负极的片状硅粒
- 下一篇:一种高性能碳磷复合负极材料的制备方法
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





