[发明专利]一种基于机器学习的辅助司法案件判决的装置在审
申请号: | 201811001531.7 | 申请日: | 2018-08-29 |
公开(公告)号: | CN109241285A | 公开(公告)日: | 2019-01-18 |
发明(设计)人: | 毕胜;漆桂林;陈佳敏;周佑勇;王禄生 | 申请(专利权)人: | 东南大学 |
主分类号: | G06F16/35 | 分类号: | G06F16/35;G06F17/27;G06Q50/18 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 柏尚春 |
地址: | 211100 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于机器 描述文本 训练模型 法条 案件 机器学习 司法案件 语义表示 分类 标签 学习 法律条文 司法领域 特征抽取 文书数据 语义特征 单标记 多标记 判决 预测 准确率 抽取 文本 关联 参考 | ||
一种基于机器学习的辅助司法案件判决的装置,利用大量文书数据,训练模型学习案件事实描述与罚金范围和相关法律条文之间的关联,实现对任意给定案件事实描述文本的罚金额度范围和法条标签进行预测。包括:确定给定案件事实描述文本中专有名词并去专有名词处理;从文本中抽取多种语义特征,实现更深层次的语义表示;基于多标记分类的机器学习方法实现对法条的分类,得到与案件事实描述文本相关的法条标签;基于机器学习的单标记分类训练模型预测相关案情可能的罚金范围。本发明首次将机器学习运用于司法领域,多种特征抽取方式实现更深层次的语义表示,很好的提升训练模型的准确率与泛化能力,对于案件最终判刑有较高参考意义,有助于“同案同判”的实现。
技术领域
本发明涉及一种基于机器学习的辅助司法案件判决技术,属于非结构化文本处理技术领域。
背景技术
近年来,人民群众的法律意识、维权意识不断增强,各种矛盾纠纷大量增多,各类诉讼案件急剧增加,“案多人少”矛盾日趋突出,繁重的工作在一定程度上影响着法院的办案效果,存在同案不同判的现象,不利于公平公正的推展。
在上个世纪计算机技术以惊人的速度发展起来,大家就开始尝试将计算机技术运用到司法领域,比较有代表性的就是基于专家系统的计算机辅助量刑系统——JUSTICE系统,该系统根据大量司法领域专家的知识和经验编写规则模拟刑事诉讼过程以实现量刑结果的预测。但该方法耗费大量人力物力,而且实际使用极其不方便,需要自己衡量完善案情的细节以得到符合的结果,而且该系统内部规则制定好后并不能很好的符合实际情况。
随着人工智能的迅速发展,我们处于一个大数据的时代,在拥有海量的文书数据后,大家已经开始尝试将AI技术运用于司法领域。国外比较成功的运用是16年IBM推出的世界首位AI律师ROSS,它主要用于提供法律咨询服务,实现法律相关对话问答而不运用于司法判决,而且ROSS仅仅针对于英美法系,语言也仅支持英语。
在计算机技术方面,数据时代互联网容纳了海量的各种类型的数据和信息,为了有效地组织和管理这些信息,并快速、准确、全面地从中找到用户所需要的信息,基于机器学习的文本分类系统作为处理和组织大量文本数据的关键技术,得到有效发展,能够在给定的分类模型下,根据文本的内容自动对文本分门别类,且达到较高的准确率。
随后遇到的许多实际问题中,一个样本可能同时属于多个类别,由此引出了多标记学习(Multi-label learning)的研究。至今,研究者们已经提出了多种多标记学习的方法,比如基于支持向量机的方法,基于BP神经网络的方法,基于概率生成模型的方法等。这些算法在文档分类、生物信息学以及场景分类等许多领域得到了成功的运用。
发明内容
技术问题:本发明提供一种基于机器学习的辅助司法案件判决的装置,通过训练模型学习发现案件事实描述与罚金范围和相关法律条文之间的关联,实现对任意给定案件事实描述文本的罚金额度范围和法条标签进行预测。
技术方案:本发明的基于机器学习的辅助司法案件判决的装置,包括:
数据预处理模块,对现有初始数据中的案件事实描述文本进行预处理,得到每一份文本对应的词语列表;
特征抽取模块,从所述数据预处理模块处理后的词语列表,抽取得到每一份文本对应的具有深层语义表示的特征向量;
模型训练模块,使用所述特征抽取模块处理得到的深层语义表示的特征向量和初始数据中包含的每一份文本对应的判决结果对模型进行训练,得到相关法条预测模型和罚金预测模型;
判决结果预测模块,对一份任意给出的案件事实描述文本经过预处理和特征抽取后得到一个具有深层语义表示的特征向量,将该特征向量分别输入到模型训练模块得到的相关法条预测模型和罚金预测模型,就能得到该案件事实描述文本对应的相关法条和罚金范围。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811001531.7/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种文档分类方法及装置
- 下一篇:用于生成文本的方法和装置