[发明专利]核磁共振图像序列的配准方法及设备有效

专利信息
申请号: 201810988485.8 申请日: 2018-08-28
公开(公告)号: CN109035316B 公开(公告)日: 2020-12-18
发明(设计)人: 徐奕宁;吴振洲 申请(专利权)人: 北京安德医智科技有限公司
主分类号: G06T7/38 分类号: G06T7/38;G06N3/04
代理公司: 北京林达刘知识产权代理事务所(普通合伙) 11277 代理人: 刘新宇
地址: 101300 北京市顺义*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 核磁共振 图像 序列 方法 设备
【说明书】:

发明公开了一种核磁共振图像序列配准方法及设备。该方法包括:响应于用户的操作,将患者的核磁共振图像序列作为待配准图像序列;使用卷积神经网络,在所述待配准图像序列与预先生成的参考图像序列之间进行图像配准,其中所述参考图像序列中的多幅图像中的特定区域相互对齐,并且其中所述卷积神经网络包含用于图像配准的判别性特征,以及其中所述判别性特征用于判别将所述待配准图像序列中的图像相对于所述参考图像序列中相应的图像所进行的图像平移、图像缩放、图像旋转和/或图像错切;以及输出经配准的核磁共振图像序列。本发明通过利用该卷积神经网络中的用于图像配准的判别性特征,可以一次性完成图像配准,从而大幅缩短图像配准时间。

技术领域

本发明涉及图像处理领域,具体涉及一种核磁共振图像序列的配准方法及设备。

背景技术

目前,图像处理技术和模式识别蓬勃发展,机器学习理论和方法日新月异。医学是人类生活关系最密切的领域之一,因此医学图像处理越来越受到人们的关注。

医学图像处理中的一个重要分支涉及根据核磁共振图像将脑部异常进行分类。如果根据患者的核磁共振图像,将他的脑部异常更准确的分类为各种囊肿或肿瘤,则将更有利于医生制定相应手术计划。

脑部异常分类的基础是脑部核磁共振图像序列配准。通常,因为各患者拍摄核磁共振图像时的不同旋转角度、不同深度等级以及不同脑部尺寸,所以任意两幅脑部核磁共振图像中的脑部特定区域是无法严格对齐的。因此,脑部核磁共振图像序列配准是指将不同图像标定到同一坐标系中的过程,从而在不同时间、从不同视角或由不同传感器拍摄的不同图像中实现脑部特定区域在尺寸上相似并且严格对齐。

相关技术中,人们已进行了若干医学图像配准研究。通常,这些工具包中实施的配准过程通过迭代更新变换参数来执行,直至用于度量待配准的两幅图像的相似度的预定义指标达到最优化。这些方法虽然已经取得了不错的表现,但是它们的配准速度缓慢,这主要因为迭代更新算法针对每一个新的配准任务都需要从头开始进行优化。

发明内容

本发明旨在提供一种核磁共振图像序列配准方法及设备,能够解决相关技术中配准速度缓慢的问题。

根据本发明的一个方面,提供了一种核磁共振图像序列配准方法。该方法包括:响应于用户的操作,将患者的核磁共振图像序列作为待配准图像序列;使用卷积神经网络,在所述待配准图像序列与预先生成的参考图像序列之间进行图像配准,其中所述参考图像序列中的多幅图像中的特定区域相互对齐,并且其中所述卷积神经网络包含用于图像配准的判别性特征,以及其中所述判别性特征用于判别将所述待配准图像序列中的图像相对于所述参考图像序列中相应的图像所进行的图像平移、图像缩放、图像旋转和/或图像错切;以及输出经配准的核磁共振图像序列。

优选地,使用所述卷积神经网络,在所述待配准图像序列与预先生成的参考图像序列之间进行图像配准,包括:在所述待配准图像序列中依次选择每张待配准图像;在所述参考图像序列中依次确定与所述待配准图像相应的参考图像;以及使用所述卷积神经网络,在所述待配准图像与其相应的参考图像之间进行图像配准。

优选地,使用所述卷积神经网络,在所述待配准图像与其相应的参考图像之间进行图像配准,包括:使用所述卷积神经网络,分别获取所述待配准图像与所述参考图像中的判别性特征;确定所获取的判别性特征之间的非线性关系和相应的图像变换矩阵;以及使用所确定的图像变换矩阵,对所述待配准图像进行仿射变换。

优选地,使用所述卷积神经网络,分别获取所述待配准图像与所述参考图像中的判别性特征,包括:使用所述卷积神经网络中的编码器,分别对所述待配准图像与所述参考图像进行以下一项或多项操作:卷积、池化、密集化、扁平化、级联,其中所述一项或多项操作的每项操作参数对于所述待配准图像与所述参考图像均相同。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京安德医智科技有限公司,未经北京安德医智科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810988485.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top