[发明专利]一种基于深度卷积生成对抗网络的叠前地震波形分类方法有效
申请号: | 201810946436.8 | 申请日: | 2018-08-20 |
公开(公告)号: | CN109143353B | 公开(公告)日: | 2019-10-01 |
发明(设计)人: | 钱峰;魏巍;尹淼;胡光岷 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G01V1/30 | 分类号: | G01V1/30 |
代理公司: | 成都虹盛汇泉专利代理有限公司 51268 | 代理人: | 王伟 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 卷积 地震波形分类 半监督 对抗 叠前地震数据 无标签样本 标签数据 标签网络 地震波形 分布特性 损失函数 特征表示 特征提取 网络学习 学习数据 训练样本 网络 分类器 启发式 对叠 精调 地表 图像 地震 分类 分析 学习 | ||
本发明提供了一种基于深度卷积生成对抗网络的叠前地震波形分类方法,属于地震相分析领域。本发明根据深度卷积生成对抗网络(DCGAN)对叠前地震波形进行半监督分类,先使用无标签样本让网络学习到叠前地震数据的特征,然后用少量有标签网络精调。本发明能从大量无标签数据中学习数据分布特性,具有很好的特征表示能力。相对于其他半监督方法需要使用多个分类器来增加训练样本,训练方法更简单。相对于其他深度学习特征提取方法,无须启发式损失函数,也能很好地表征图像。
技术领域
本发明属于地震相分析领域,特别涉及一种基于深度卷积生成对抗网络的叠前地震波形分类方法。
背景技术
地震相分析的方法就是通过在划分地震层序的基础上,利用各种地震参数之间的差别以及参数之间的关系,将地震层序划分为不同的区域,然后再进行推断地质结构。地震相分析中应考虑的参数有:反射振幅、主反射频率、反射极性、层速度、反射连续性、反射结构、反射丰度、地震相单元几何、与其它单元的关系。地震数据就是地表检波器接收到的反射信号,然后,将地震信号的细微变化和地下结构信息进行映射,该操作可以通过信号分类技术来完成。地震相数据的解释可以是直接的,也可以是间接的。直接解释的目的是找出引起地震相单元地震特征的地质原因。所以,直接解释可能旨在预测岩性、孔隙度、流体含量,相对年龄,超压页岩、类型分层,对应的地震相单元及其地质背景地质体几何。间接解释的目的是得出一些关于沉积过程和环境、沉积物搬运方向和地质演化(海侵、消退、沉降、隆起、侵蚀)方面的结论。除了提供地震相分类,地震信号分类还可以通过同时评估瞬时属性,相似性及声阻抗的和AVO多属性分析相结合来更好地表达地下信息。地震相分析结果可在地震相剖面和地震相图上显示。根据该区现有的地震资料和地质条件,地震相图可能有不同的类型,如显示不同地震相单元分布的一般地震相图、砂泥岩比图、交错层理方向图和古迁移图等。
叠前地震波是不同方位地表角检波器接收到的原始反射信号,对于检波点都可以利用多重维度的数据来进行描述地下结构信息。叠前地震信号和叠后信号是密切相关的,叠后信号是通过叠加已经用速度模型“校正”或“迁移”的叠前信号获得的。速度模型是从地震时差中获得的,其中运动学可利用的叠前地震事件(通常是初级反射)的偏移。因此叠后数据量较小,数据维度也偏小,失去了原始的信息。如今,大数据技术的快速发展为叠前信号的处理提供了充分的技术支持,从而弥补了以往波形分类算法只能处理叠后信息的不足。
在石油勘探的初期,会产生大量的的叠前地震数据,这些数据可以通过无监督聚类技术来完成地震相分析,从而映射地下结构信息,进而预测以及选择测井的合理位置。而在获得一定数量测井属性后,可以结合测井数据、岩心等对地震相校准。通常使用机器学习中的有监督方法,自动根据测井信息对储层数据进行分类。但是由于测井数据相对地震数据是稀疏的,测井数据只能代表局部地质信息,在传统的有监督分类方法中,分类结果往往较差。
发明内容
为了解决现有技术中的问题,本发明提出了一种基于深度卷积生成对抗网络的叠前地震波形分类方法,基于深度学习技术,围绕地震叠前波形的去噪、特征提取、无监督学习和半监督学习等方面进行研究,研究出如何使用叠前地震波形更好地生成地震相图,有效帮助地质的解释工作。
一种基于深度卷积生成对抗网络的叠前地震波形分类方法,包括以下步骤:
步骤1,对叠前地震数据进行预处理,进行结构导向滤波后根据层位提取样本数据,根据测井位置选取测井邻域数据为有标签数据,其余数据为无标签数据;
步骤2,输入所述无标签数据至深度卷积生成对抗网络进行训练;
步骤3,将所述深度卷积生成对抗网络中判别器的最后一层替换为softmax分类器,构造分类网络模型;
步骤4,输入所述有标签数据至所述分类网络模型进行精调;
步骤5,输入地震工区数据至精调后的分类网络模型,得到所有样本的分类结果和地震相图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810946436.8/2.html,转载请声明来源钻瓜专利网。