[发明专利]基于辅助监督学习的行程时间估计方法有效

专利信息
申请号: 201810658375.5 申请日: 2018-06-25
公开(公告)号: CN109035761B 公开(公告)日: 2021-06-04
发明(设计)人: 孙未未;章瀚元;吴昊 申请(专利权)人: 复旦大学
主分类号: G08G1/01 分类号: G08G1/01;G06N3/04
代理公司: 上海正旦专利代理有限公司 31200 代理人: 陆飞;陆尤
地址: 200433 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 辅助 监督 学习 行程 时间 估计 方法
【说明书】:

发明属于智能交通技术领域,具体为一种基于辅助监督学习的行程时间估计方法。其从海量历史轨迹数据中寻找统计规律,通过端到端的深度学习模型对整个行程的时间进行整体的估计;步骤包括:特征提取和表示阶段,对轨迹数据进行预处理,分别抽取它的时间和空间特征,驾驶状态特征,短时间和长时间的交通状况特征;训练和预测阶段,将这些提取的特征用统一的双向循环神经网络进行训练和预测;循环神经网络每一步都输出通过当前小区域的时间开销;这些小区域的时间开销的总和即为总路径的时间开销。同时,还引入双向区间损失函数来约束中间时间开销。本方法可高效准确地对城市中的车辆行程时间进行估计,在实际环境下具有较好的效果。

技术领域

本发明属于智能交通技术领域,具体涉及一种基于辅助监督学习的行程时间估计方法。

背景技术

行程时间估计是城市交通领域一个必不可少的重要技术,可以为人们的出行通勤提供帮助,也可以为政府规划决策提供支持。但这并不是一个简单的小问题,而是会受到各种动态因素的影响,如交通动态,路口状况,司机驾驶行为的变化和历史周期性的数据演化等等。这些因素导致行程时间估计存在不确定性和难度。随着支持GPS的移动设备的发展和普及,目前已经有大量的轨迹数据在源源不断地产生,并且覆盖城市的各个角落。有了这些海量的历史轨迹数据,我们可以挖掘数据背后的内在规律,通过构建算法模型来学习出行程时间的变化的周期和趋势,从而更加准确地推断当前查询轨迹所需的时间开销。

目前已有的方法大多采用分而治之(divide-and-conquer)的方法,主要是通过将路径分解一系列的路段或者子路径这两类。

(1)基于单一路段的方法:

基于单路段的方法主要通过估计每一条单一路段的轨迹经过时的平均速度,进而根据路段长度计算出经过的平均时间开销,最后将各个路段的时间和累加得到总的时间。但这种方法没有考虑路段之间的路口时间开销。另外,这种估计严重依赖于高质量的速度数据,而这往往在轨迹数据中无法得到。

(2)基于子路径的方法:

基于子路径的方法主要通过将路径分割成一系列的子路径方法,使得路口的时间开销也得到考虑。主要思路都是对历史数据中丰富的公共子路径信息进行拼接和挖掘。尽管这种方法可以克服单一路段方法的许多缺陷,但它仍然是基于启发式设计,而不是直接将行程时间作为算法优化目标。

总而言之,目前已有的方法无法达到令人满意的准确性有两个方面的原因。一个是它们没有把路径看成一个整体,而是拆分成各个子块。在这一拆分过程中,损失了很多有用的信息。并且,它们没有充分利用轨迹数据特有的中间监督标签,也就是每一个中间GPS采样点的时间戳信息。另一方面,随着深度学习技术的发展和繁荣,更多的问题可以通过端到端一体式地解决,相较于传统启发式模型要更为高效。并且,深度学习有着强大的表征能力,与手工模型相比,可以捕捉到更多的潜在特征,能够处理行程估计问题中各种复杂的动态性。

发明内容

本发明的目的是针对传统的两类行程时间估计技术的局限性,提出一种基于辅助监督学习的历史轨迹的行程时间估计方法,以克服现有技术的不足。

本发明方法从海量历史轨迹数据中寻找统计规律,通过端到端的深度学习模型对整个行程的时间进行整体的估计。基本步骤包括:特征提取和表示阶段,对轨迹数据进行预处理,分别抽取它的各方面特征;训练和预测阶段,将这些提取的特征用一个统一的双向循环神经网络进行训练和预测;循环神经网络每一步都输出通过当前小区域的时间开销;这些小区域的时间开销的总和即为总路径的时间开销;为了更加有效地进行训练,还引入了双向区间损失函数来约束中间时间开销。

本发明提出的基于辅助监督学习的历史轨迹的行程时间估计方法,分为如下三个阶段:

(一)特征提取和表示阶段,对历史轨迹数据进行预处理,抽取它的各方面特征(包括时间特征和空间特征,驾驶状态特征,短时间和长时间的交通状况特征等)。具体步骤为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810658375.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top