[发明专利]一种基于模糊C均值点迹分簇方法有效

专利信息
申请号: 201810622903.1 申请日: 2018-06-15
公开(公告)号: CN108828583B 公开(公告)日: 2022-06-28
发明(设计)人: 许录平;阎博;滕欣进;丁智青;许娜;杨升;李沐青;孙志峰;周钇辛;吕鹏飞 申请(专利权)人: 西安电子科技大学;南京长江电子信息产业集团有限公司
主分类号: G01S13/66 分类号: G01S13/66;G01S7/41
代理公司: 西安长和专利代理有限公司 61227 代理人: 黄伟洪
地址: 710071 陕西省*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 模糊 均值 点迹分簇 方法
【说明书】:

发明属于雷达跟踪系统;类似系统技术领域,公开了一种基于模糊C均值点迹分簇方法,测量值分组;去除杂波;估计组中目标的数量;选择初始中心;计算隶属度矩阵Ut;进行解模糊;估计集群的完整性;更新分簇矩阵Ut+1和集群的中心vi;用矩阵范数比较Ut和Ut+1;如果||Ut+1‑Ut||≤ε,停止。否则,令t=t+1进行新一轮更新;最后根据分簇矩阵解模糊测量值。本发明为了找到初始目标中心,考虑了预测定位和测量率。同时,在FCM算法的迭代过程中考虑了聚类的完整性。与传统方法相比,本发明具有更好的鲁棒性和有效性,可用于将雷达探测到的多机动目标进行正确的分簇,从而更好地对目标进行跟踪。

技术领域

本发明属于雷达跟踪系统;类似系统技术领域,尤其涉及一种基于模糊C均值(Fuzzy C-means算法简称FCM算法)点迹分簇方法、雷达多机动目标检测系统。

背景技术

目前,业内常用的现有技术是这样的:雷达多机动目标的检测一直是一个具有挑战性的问题,因为目标的数量是未知的和时变的。由于以前雷达的分辨率较低,目标只出现在单个分辨率单元中;随着现代雷达分辨率的提高,雷达波束可以从飞机多个反射点上都采集到测量值,即一个目标多个测量值。具有多个检测的目标称为“扩展目标”或“扩展对象”,在这种情况下,目标不再被归类为一个点目标,被表示为一个扩展目标。直接使用现有的目标跟踪算法跟踪“扩展目标”会产生大量重复航迹。因此针对扩展目标的跟踪问题,提出了许多理论模型和跟踪算法。现有技术一提出一种基于距离的分区方法,经过实测数据测试后,证明了算法的可行性;但其分区的数目随着目标数目的增加而迅速增长,这将消耗大量的计算时间,使得扩展目标跟踪过程变得难以计算。现有技术二给出一种基于谱聚类技术的有效分区方法,利用高斯核密度分析技术从测量集中消除杂波测量,减少了计算负担,但很难在跟踪过程之前准确估计目标的数量,分区结果也依赖于集群参数的选择。现有技术三所提的方法在杂乱的情况下效果很好,但仅仅是通过交叉航迹和分离航迹来检验的。因此,有必要在各种情况下对扩展目标进行杂波分区。综上所述,当目标比较密集的时候,多个目标的测量值会相距比较近,在分簇时候可能被分为一簇,在估计目标数量与估计目标参数时都会产生较大误差。如在机场附近,目标十分密集,同时飞机会做一系列转弯、爬升等机动运动。再加上附近电磁干扰产生的虚警测量值,上述算法难以满足要求。

综上所述,现有技术存在的问题是:当目标比较密集的时候,多个目标的测量值会相距比较近,在分簇时候可能被分为一簇,在估计目标数量与估计目标参数时产生较大误差,不同目标测量值可能分到不同簇内,导致跟踪效果较差;密集扩展目标的情况下,跟踪效果较差。

解决上述技术问题的难度和意义:难度在于借助跟踪算法中可知的目标信息来改进分簇算法,即将目标预测位置、检测率与测量值分布作为先验知识参与测量值的分簇。在使用改进的分簇算法之后,即使若干目标相距较近,由于使用了各个目标的先验信息,不同目标测量值会被分到不同的簇内。

发明内容

针对现有技术存在的问题,本发明提供了一种基于模糊C均值点迹分簇方法。

本发明是这样实现的,一种基于模糊C均值点迹分簇方法,所述基于模糊C均值点迹分簇方法包括:测量值分组;去除杂波;估计组中目标的数量;选择初始中心;计算隶属度矩阵Ut;进行解模糊;估计集群的完整性;更新分簇矩阵Ut+1和集群的中心vi;用矩阵范数比较Ut和Ut+1;如果||Ut+1-Ut||≤ε,停止;否则,令t=t+1进行新一轮更新;根据分簇矩阵解模糊测量值。

进一步,所述基于模糊C均值点迹分簇方法包括以下步骤:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学;南京长江电子信息产业集团有限公司,未经西安电子科技大学;南京长江电子信息产业集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810622903.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top