[发明专利]一种仿真文本病历的生成方法及系统有效

专利信息
申请号: 201810600640.4 申请日: 2018-06-12
公开(公告)号: CN109003678B 公开(公告)日: 2021-04-30
发明(设计)人: 张学工;关嘉麒;闾海荣 申请(专利权)人: 清华大学
主分类号: G16H50/70 分类号: G16H50/70;G16H50/20;G16H10/60
代理公司: 北京鸿元知识产权代理有限公司 11327 代理人: 董永辉;曹素云
地址: 100084 北京市海淀区1*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 仿真 文本 病历 生成 方法 系统
【说明书】:

一种仿真文本病历的生成方法及系统,采用原始病历生成正样本,生成器每次循环以上一次循环输出的词向量和疾病标签向量为输入,输出新的词向量,重复多次生成由多个词向量组成的句子。每生成一个词向量,以已生成词向量序列为初始状态,重复运行生成器采样,生成多个句子,判别器对所有句子的奖励值取平均值,作为该次的词向量的奖励值,根据得到的句子和词向量的奖励值更新生成器,如此反复直至收敛。收敛的生成器生成负样本,与正样本组成混合病历数据集,以疾病标签向量和词向量序列为输入,得到每一病历来自真实病历的概率,更新判别器,如此反复直至收敛。本发明避免涉及病人隐私,仿真文本病历可辅助其它机器学习任务,方便对该疾病的研究。

技术领域

本发明涉及机器学习技术领域,具体地说,涉及一种仿真文本病历的生成方法及系统。

背景技术

随着时代的发展,信息化程度的不断提高,电子病历的使用越来越广泛。与此同时,随着近年来机器学习与深度学习的快速发展,人们开始尝试用机器学习的方法解决医疗领域的问题,并取得了一些成效。然而,电子病历数据的获取与使用,一方面由于涉及病人隐私等问题,可能受到患者个人意愿和法律法规的层层限制,从而制约了基于大数据的机器学习等相关算法的使用;另一方面由于病历数据本身具有较大的差异性,对于某类疾病可能会出现正负样本(患病样本与非患病样本)不均衡的情况,影响机器学习相关算法的效果。针对以上问题,生成尽量还原真实病历样本分布的仿真病历数据,是一种有效的解决方案,然而当前却很少有技术尝试解决这一问题。少量的病历生成与文本生成的相关技术也存在以下问题:1.作用仅为辅助生成格式化病历,使之符合标准格式需要,减轻医生手写排版的工作,并未涉及自动生成仿真病历。2.可以根据已有文本进行合并,生成新文本,但并未涉及机器学习相关算法,生成文本多样性也十分有限。3.相关基于人工智能的文本生成方法作用范围有限(仅为文本扩展,而无法生成全文本),且应用范围不明确,与医疗领域结合不紧密。

发明内容

为解决以上问题,本发明提供一种仿真文本病历的生成方法及系统,包括以下步骤:

步骤S1,对原始病历数据进行预处理,生成由真实病历数据组成的正样本,具体包括如下步骤:

步骤S11,获取包括病情描述和诊断结果的真实病历的文本;

步骤S12,对病情描述和诊断结果进行提取并分别编制适于计算机读取的编码;

步骤S14,生成所述正样本,

步骤S2,训练模型,具体包括以下步骤:

步骤S21,构建生成器与判别器,初始化参数;

步骤S23,对生成器与判别器进行对抗训练,循环执行如下过程直至生成式对抗网络收敛:

步骤S231,对生成器执行多次迭代,直至收敛,具体包括如下步骤:

步骤S2311,生成器执行T次循环,每次循环以上一次循环输出的词向量和疾病标签向量为输入,输出新的词向量,从而重复T次生成长度为T的句子X1:T,其中,

以已经生成的词向量序列(x1,x2,…,xt-1)为初始状态固定不变,重复运行生成器进行采样,生成以X1:t-1为前缀的N个完整的句子,判别器对每个句子给出一个奖励值,对N个句子的奖励值取平均值,作为第t步所生成词向量xt的奖励值,

其中,词向量从事先设定的包含病历词汇的词典中选取,疾病标签向量是与病情诊断结果对应的向量;

步骤S2312,根据得到的序列总长度为T的句子,和序列中每个词向量获得的来自于判别器的奖励值,更新生成器,然后返回步骤S2311,直至收敛;

步骤S232,执行多次迭代,直至收敛,具体包括如下步骤:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810600640.4/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top