[发明专利]基于时空一体化的特高拱坝变形时空序列预测方法有效
申请号: | 201810598142.0 | 申请日: | 2018-06-12 |
公开(公告)号: | CN108846199B | 公开(公告)日: | 2019-04-05 |
发明(设计)人: | 艾永平;毛莺池;高建;陈豪;李承兵;陈琨;王晓刚;丁玉江;龚友龙;沈凤群;谭彬;余记远 | 申请(专利权)人: | 华能澜沧江水电股份有限公司;河海大学;华能集团技术创新中心有限公司 |
主分类号: | G06F17/50 | 分类号: | G06F17/50 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 李玉平 |
地址: | 650214 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 时空 预测 变形 门限 去除 循环神经网络 时空序列 随机变化 高拱坝 残差 测点 拟合 大坝 随机误差项 过程分解 监测数据 时间序列 时空变化 实测数据 位移数据 无偏估计 训练数据 一体化 传感器 确定性 引入 期望 应用 优化 网络 | ||
本发明公开了一种基于时空一体化的特高拱坝变形时空序列预测方法,包括以下步骤:大坝传感器在监测数据时,实测数据中时常带有随机误差项,假设时空过程分解为两部分:确定性时空变化和去除确定趋势后的小规模误差随机变化并且去除确定趋势后的小规模误差随机变化的期望为零。应用简单BP神经网络拟合整体时空趋势;在去除整体时空趋势后得到残差项,对残差项进行线性无偏估计,选用时空克里格方法拟合局部时空趋势;引入门限循环神经网络对大坝各测点时间序列进行预测,预测出相关测点变形值,将门限循环神经网络预测出的变形值与BP神经网络预测出的变形值进行对比,如果门限网络的预测值更加精确,那么将预测后的顺河向位移数据作为训练数据优化BP网络。
技术领域
本发明涉及高拱坝变形时空序列预测技术领域,具体涉及一种结合BP网络、 GRU神经网络以及时空克里格方法对高拱坝变形时空序列进行预测。
背景技术
随着现代传感器数据种类和数量的快速增长,如何合理有效的利用这些收集的海量信息预测大坝整体的变形值,进而把握高拱坝整体变形状态,已经成为水利工作者亟待解决的问题。只有了解大坝整体的状态,才能做到对发现的异常情况及时处理,防患于未然。才能保证大坝始终运行在安全高效的环境中。
大坝变形值通过埋设在坝体内部的位移传感器测量得到,位移传感器限于大坝实际结构,只能布设在有限的几处重点监测位置。由于测点布置相对离散,无法把握大坝空间整体状态。目前常见的做法是将大坝看作由一群三维空间点组成的有机整体,利用空间插值算法插补出未知点位移值。这一方法虽然达到了了解大坝整体状态的目的,但是它的弊端是只能了解当前时间点或历史时间上的变形状态,无法对整体变形状态做出预测。要预测大坝整体变形值,就是在空间插值的基础上加入时间维度,预测构成大坝的任意一点在任一时间的变形值。由于大坝变形的过程本质上是时空过程,所以设计出许多数据收集方法来记录数据中每个测点的空间和时间信息,这些信息被称为时空序列(Spatio-TemporalSeries, ST)数据。本发明研究的问题可以理解为通过有限测点的大坝历史变形数据来预测未来任意时间任意位置的变形值,即时空序列预测。
时空数据由于在空间和时间两个维度上同时存在依赖关系,这就使得它与经典数据挖掘文献中研究的其他数据不同。许多广泛使用的数据挖掘方法都建立在数据实例独立且分布相同(Independent Identically Distributed,IID)的假设基础上。然而,该假设在处理时空数据时可能并不成立,这是因为数据实例在空间和时间结构上彼此相关,并且在不同的空间区域或时间段中会显示不同的属性。在数据分析过程中忽略这些依赖关系可能导致预测结果准确性不高,预测结论的可解释性较差。在时空数据研究领域,除限制传统预测算法的有效性之外,空间和时间信息的存在还使得在时空数据挖掘中应用新兴技术成为可能,如人工神经网络(Artificial Neural Network,ANN)和门限循环神经网络(GatedRecurrent Unit, GRU)等。因此应用神经网络技术,结合时间和空间维度,综合考虑大坝变形整体时空趋势和局部时空趋势,对未观测时空位置变形值进行建模和预测进而展示出大坝整体变形状态,是本发明所要解决的问题。
发明内容
发明目的:基于时空一体化的高拱坝变形时空序列预测方法,解决现有技术中无法综合考虑时空序列预测中的时空相关性的问题。为综合考虑时间和空间因素,将时空演变过程分为整体和局部两部分,应用简单神经网络拟合整体时空趋势,采用传统时空预测模型拟合局部随机过程,构造一种新型时空序列预测算法。由于简单神经网络无法准确捕捉时间序列中的长期依赖性,为解决该问题引入门限循环网络,利用门限循环网络对时间序列数据高精度预测的优势优化简单神经网络。
技术方案:一种基于时空一体化的特高拱坝变形时空序列预测方法,包括以下三个方面:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华能澜沧江水电股份有限公司;河海大学;华能集团技术创新中心有限公司,未经华能澜沧江水电股份有限公司;河海大学;华能集团技术创新中心有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810598142.0/2.html,转载请声明来源钻瓜专利网。