[发明专利]一种电缆设备温度异常定位与识别方法有效
申请号: | 201810509939.9 | 申请日: | 2018-05-24 |
公开(公告)号: | CN108846418B | 公开(公告)日: | 2019-12-13 |
发明(设计)人: | 仇炜;黄顺涛;裴星宇;崔江静;叶宇婷;曾啸;朱五洲;袁永毅;周小艺;韦亦龙 | 申请(专利权)人: | 广东电网有限责任公司;广东电网有限责任公司珠海供电局 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G01J5/00 |
代理公司: | 44102 广州粤高专利商标代理有限公司 | 代理人: | 刘瑶云 |
地址: | 510050 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 电缆设备 温度异常 目标检测 训练样本 计算机图像处理 卷积神经网络 可见光照片 电缆接头 电缆隧道 二维图片 红外图片 接头区域 网络参数 网络模型 网络提取 巡检系统 训练目标 训练图片 样本生成 预选区域 映射 准确率 构建 网络 报警 拍摄 检测 分析 图片 | ||
本发明涉及计算机图像处理识别的技术领域,更具体地,涉及一种电缆设备温度异常定位与识别方法,首先在电缆隧道巡检系统拍摄的图片的基础上通过扩充样本生成目标数量的训练图片与原图共同作为训练样本,构建Faster R‑CNN网络模型对训练样本进行训练得到目标检测网络,得到接头区域在可见光照片上的位置,并映射到红外图片,并对电缆接头温度进行分析来及时对异常情况作出报警。本发明选择训练Faster R‑CNN目标检测网络参数,用RPN网络提取预选区域训练目标检测网络,充分利用卷积神经网络提取二维图片特征的能力,实现电缆设备温度异常定位与识别,具有较高的准确率,适用性广,具有良好的识别质量和较高的识别速度。
技术领域
本发明涉及计算机图像处理识别的技术领域,更具体地,涉及一种电缆设备温度异常定位与识别方法。
背景技术
地下电缆隧道内的电缆线路和各种电力设备通信设备的数量在逐渐增多,且电缆隧道的结构因地势等原因比较复杂,这些都使得地下电缆的维护变得越来越困难。由于电缆接头处的工艺水平限制,连接不牢固等问题都可能导致接头处电阻过高,在电缆电流流过时产生的热效应之下会导致电缆接头处发热,严重的会导致电缆的绝缘被破坏致使漏电,甚至会引发火灾。而在非连接处由于电阻值较小一般不会出现热故障,因此对电缆接头的温度监控对于减小电缆故障,延长电缆使用寿命都有重要意义。由于电缆铺设长度较长、内部环境拥挤,目前电缆内部的人工巡检的效率低下,不便于对出现异常的电缆设备作出快速、正确的处理。
发明内容
本发明的目的在于克服现有技术的不足,提供一种电缆设备温度异常定位与识别方法,基于卷积神经网络和迁移学习,利用图像处理技术完成对电缆设备的在线监测,便于运维人员对出现异常的电缆设备作出快速、正确的处理,实现电缆隧道巡检的智能化、快速化和准确化。
为解决上述技术问题,本发明采用的技术方案是:
提供一种电缆设备温度异常定位与识别方法,其特征在于,包括以下步骤:
S1.通过隧道巡检机器人摄像头拍摄采集包含有目标电缆设备的样本图像;
S2.对步骤S1中样本图像进行扩充处理,生成目标数量的训练图片和原图共同作为训练样本;
S3.构建Faster R-CNN网络模型并导入步骤S2中的训练样本,用已经在ImageNet上预训练后得到的ZFNet网络参数初始化RPN,再用预训练的ZFNet网络参数初始化FasterR-CNN目标检测网络参数,并通过RPN网络提取预选区域训练目标检测网络;
S4.用步骤S3训练后的目标检测网络初始化RPN网络,固定RPN网络的卷积层并进行微调,固定目标检测网络的卷积层并用微调后的RPN网络提取的预选区域对目标检测网络微调,得到包括接头区域位置信息的输出结果;
S5.根据步骤S4得到的接头区域以及隧道巡检机器人的可见光摄像头与红外摄像头的参数可以将接头区域从可见光照片映射到红外照片上;
S6.对步骤S5的红外照片区域做温度最高值搜索,得到最高温度值;并根据电缆线芯温度与防爆箱温度的矫正公式矫正得到电缆接头处线芯的最高温度;
S7.将电缆接头处线芯的最高温度与电缆接头的巡检标准温度阈值对比判断是否出现异常高温,若是,则决定报警。
本发明的电缆设备温度异常定位与识别方法,首先在电缆隧道巡检系统拍摄的图片的基础上通过扩充样本生成目标数量的训练图片与原图共同作为训练样本,构建FasterR-CNN网络模型对训练样本进行训练得到目标检测网络,得到接头区域在可见光照片上的位置,并映射到红外图片,并对电缆接头温度进行分析来及时对异常情况作出报警。本发明采用了迁移学习的方法,减轻了训练强度,保证较好的定位识别效果,能够实现电缆设备温度异常定位与识别,具有较高的准确率,且适用性广,具有良好的识别质量和较高的识别速度,为电力隧道智能化,无人化值守提供了重要的技术支撑。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东电网有限责任公司;广东电网有限责任公司珠海供电局,未经广东电网有限责任公司;广东电网有限责任公司珠海供电局许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810509939.9/2.html,转载请声明来源钻瓜专利网。