[发明专利]一种智能结肠癌癌细胞检测仪在审

专利信息
申请号: 201810458517.3 申请日: 2018-05-14
公开(公告)号: CN108695002A 公开(公告)日: 2018-10-23
发明(设计)人: 刘兴高;高信腾;孙元萌 申请(专利权)人: 浙江大学
主分类号: G16H50/30 分类号: G16H50/30;G06F19/20
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 邱启旺
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 癌细胞检测 基因微阵列 数据预处理 结肠癌 智能 排序 模型输出模块 分类器参数 种群多样性 参数寻优 分数计算 模型构建 排序模块 输出结果 系统诊断 在线检测 准则函数 最优参数 基因 分类器 贡献度 适应度 再利用 扰动 读入 寻优 算法 优化 种群 搜寻 检测 改进 统计
【权利要求书】:

1.一种智能结肠癌癌细胞检测仪,其特征在于:该系统由基因微阵列读入模块、数据预处理及特征排序模块、参数寻优模块、模型输出模块组成。

2.根据权利要求1所述智能结肠癌癌细胞检测仪,其特征在于:所述基因微阵列读入模块读入所有基因微阵列的类别标签Y=[y1,y2,...,ym],其中yi=k,k∈(-1,1),以及所有样本的基因微阵列表达值:

其中每一行xi代表一个样本所有基因的表达值,对应的每一列xj代表一个基因在所有样本中的表达值,下标i表示第i个样本、总共m个,下标j表示第j个基因、总共n个。

3.根据权利要求1所述智能结肠癌癌细胞检测仪,其特征在于:所述数据预处理及特征排序模块对读入的原始微阵列数据进行归一化以及特征排序的处理过程。其中归一化操作为:

其中,Min、Max分别为样本基因表达值的最小值、最大值。而特征排序选择使用每个基因对分类准确度的贡献度打分来实现,通过定义一个贡献度函数:

其中,α=[α1,...,αn],Hij=yiyjK(xi,xj),α为法向量对应的系数、H为中间矩阵,J为代价函数、I为单位矩阵、K为核函数、y为标签值、x为样本特征值,上标T表示矩阵的转置、下标i、j分别表示第i个样本和第j个基因。事实上,该式代表分类边界大小的平方值,则有:

定义w为分类绝策面的法向量、w*为最优法向量、α为法向量对应的系数、α*最优法向量对应的系数。观察上式,可以得到:各个特征的重要程度根据该特征对于这个代价函数的贡献大小来决定,即每个特征的贡献值为:其中,δ表示贡献度。

在使用非线性核作为核函数的时候,一般可以如下近似计算:

其中,合理假设某个特征消去之后α值不变,H(-i)表示该特征消去之后的H矩阵值。而在使用该假设时,得到的结果与线性核的结果相差不大。利用该式即可循环计算特征贡献度进行基因重要性排序。

在构建回声状态网络分两类器过程中,通过输入矩阵X和输出矩阵Y训练ESN分类器,分类器的状态转移方程和输出方程分别为

S=φ(WresS+WinX)

其中,S是q×1储存池单元状态矩阵,X是基因特征输入矩阵,Y是m×1基因检测输出矩阵。Wresq×q的权重矩阵,Win和Wout分别是q×m的输入权重矩阵和输出权重矩阵。φ是从特征空间到输出空间的非线性映射,如下

其中,是tanh激活函数,表达为

单隐层前馈神经网络的输入权值Win和隐含层的权重Wres在网络训练的过程中不需要调整,输出权重由线性最小二乘方法进行辨识

ESN分类器针对基因检测非线性问题具有训练速度快,精度高的优点。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810458517.3/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top