[发明专利]一种SAR雷达陆地坦克目标识别系统在审
| 申请号: | 201810457335.4 | 申请日: | 2018-05-14 |
| 公开(公告)号: | CN108921009A | 公开(公告)日: | 2018-11-30 |
| 发明(设计)人: | 刘兴高;吴俊;孙元萌 | 申请(专利权)人: | 浙江大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/34;G06K9/62 |
| 代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 邱启旺 |
| 地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 雷达 目标识别系统 上位机 陆地 数据库 坦克 分类器训练模块 图像预处理模块 结果显示模块 特征提取模块 特征选择模块 图像数据存储 实时监测 依次相连 在线识别 | ||
1.一种SAR雷达陆地坦克目标识别系统,其特征在于:包括SAR雷达、数据库以及上位机,SAR雷达、数据库和上位机依次相连,所述SAR雷达对陆地进行实时监测,并将SAR雷达获得的图像数据存储到所述的数据库中,所述的上位机包括图像预处理模块、特征提取模块、分类器训练模块、分类器训练模块和结果显示模块,所述图像预处理模块、特征提取模块、分类器训练模块、分类器训练模块和结果显示模块依次相连。
2.根据权利要求1所述SAR雷达陆地坦克目标识别系统,其特征在于:所述图像预处理模块用以进行SAR雷达图像数据预处理,采用如下过程完成:
1)从数据库中传来的SAR图像灰度级为L,f(x0,y0)为像素点(x0,y0)处的灰度值,g(x0,y0)为像素点(x0,y0)的N×N邻域内像素的平均值,其中x0,y0分别表示像素点的横坐标和纵坐标;
2)通过计算满足f=m和g=n的像素数目h(m,n),得到二维联合概率密度pmn:
pmn=p(m,n)=h(m,n)/M
其中,M表示图像像素的总数目;
3)计算二维直方图的均值向量μ:
4)分别计算图像中目标和背景出现的概率P0,1和均值向量μ0,1:
其中,t、s、下标0、下标1分别表示f分割阈值、g分割阈值、目标区域、背景区域;
5)计算类间方差BCV:
BCV=P0(μ0-μ)(μ0-μ)′+P1(μ1-μ)(μ1-μ)′;
其中,μ表示均值向量,上标’表示矩阵的转置。
6)最佳阈值即为使得BCV为最大值时的二维阈值向量[s0,t0]:
3.根据权利要求1所述SAR雷达陆地坦克目标识别系统,其特征在于:所述特征提取模块用以进行坦克典型特征的提取,采用如下过程完成:
1)从图像预处理模块传来的只包含一个坦克目标的SAR图像切片I(m,n),其中只包含目标区域的二值图为B(m,n),则只包含目标的图像T(m,n):
T(m,n)=I(m,n)×B(m,n)
其中,×表示对应像素相乘;
2)在B(m,n)中根据坦克个体的主轴方向求得坦克主体区域的最小外接矩形,则该矩形的长边长度Length即为坦克个体的长度,矩形的短边长度Width即为坦克个体的宽度;
3)计算得到几何结构特征,其中包括周长、面积、长宽比、形状复杂度、目标质心位置以及转动惯量:
周长面积长宽比R=Length/Width;形状复杂度C=Length2/4πS;目标区域的质心位置
转动惯量式中,r代表了目标像素点与质心之间的距离,
4)计算得到灰度统计特征,其中包括质量、均值、方差系数、标准差、分形维数、加权填充比:
质量均值方差系数标准差式中分别表示灰度对数和、灰度对数平方和;分形维数H=(log10N1-log10N2)/(log10d1-log10d2),该特征的计算方法是:用分割后的SAR图像切片构建一个保留了目标区域的K(这里取K=50)个最亮像素点的二值图B2(m,n),首先将一个大小为d1×d2的窗口在这个二值图中连续滑动,记下窗口中包含亮点的窗口总数记为N1,接着再用一个大小为d2×d2的窗口在这个二值图中连续滑动,记下在窗口中包含亮点的窗口总数记为N2;加权填充比
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810457335.4/1.html,转载请声明来源钻瓜专利网。
- 上一篇:人像识别方法、装置及电子设备
- 下一篇:一种瞳孔检测方法及检测装置





