[发明专利]一种信号调制方式的识别方法有效
申请号: | 201810390417.1 | 申请日: | 2018-04-27 |
公开(公告)号: | CN108600135B | 公开(公告)日: | 2020-07-31 |
发明(设计)人: | 赵宏宁;周一青;孙茜;田霖;石晶林 | 申请(专利权)人: | 中国科学院计算技术研究所 |
主分类号: | H04L27/00 | 分类号: | H04L27/00;G06K9/62 |
代理公司: | 北京泛华伟业知识产权代理有限公司 11280 | 代理人: | 王勇 |
地址: | 100190 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 信号 调制 方式 识别 方法 | ||
本发明提供了一种构建信号调制方式识别模型的方法。该方法包括:根据调制信号循环谱图中多个数据点的特征数据与信号调制方式的关联性,获得由多组分析数据构成的训练集,其中,每组分析数据包括循环谱图中多个数据点的特征数据和对应的调制方式;基于所述训练集,以所述循环谱图中多个数据点的特征数据作为输入,以所述对应的调制方式作为输出,训练分类模型,从而获得信号调制方式识别模型。本发明提供了扩展性好的信号调制方式识别模型,能够提高信号调制方式的正确识别率,对于低信噪比信号尤其有效。
技术领域
本发明涉及通信技术领域,尤其涉及一种信号调制方式的识别方法。
背景技术
由于通信技术的飞速发展,通信的规范和体系也在不断突破,尤其在非合作通信方面,参见图1示出的非合作通信过程,非合作通信是在不影响合作通信发送方和合作通信接收方正常通信的前提下接入到合作通信系统的通信方式,是一种非授权的接入通信模式,由于非合作接收方不能像合作通信中的双方那样已知发送方的相关信息,因此,需要完成非授权模式下的信号检测、调制方式识别与解调。随着非标准体制的应用越来越广泛,对信号侦察的要求也更高了,其中,信号调制方式的识别是信号侦察的一个重要环节,只有在准确地识别调制方式的前提下,才能对信号进行正确的解调。
在现有技术中,通常采用两种方法来识别信号的调制方式,包括:最大似然假设检验方法和基于特征提取的模式识别方法。最大似然法是采用概率论和假设检验理论来解决信号调制方式的识别问题,其是根据信号的统计特性,通过理论分析与推导,得到统计检验量,然后与一个合适的门限进行比较,从而形成判决准则来实现信号调制方式的自动识别。最大似然法需要知道更多的先验知识,例如,除了载波频率、码元速率、信号均值和方差等之外,还需要知道信噪比参数和噪声模型等,并且,当实际接收的信号与最大似然比识别算法模型有差异时,算法的性能下降很多,甚至得出错误的结论,此外,由于未知参量的存在,导致最大似然比识别算法的分类统计量一般都非常复杂,而对其进行简化的结果,往往又导致分类信息的丢失、调制类型的合并、分类性能的下降等问题,因此,最大似然比方法不适用于低信噪比的非合作通信环境。基于特征提取的模式识别方法由信号预处理、特征分析与提取和分类器设计三部分组成,其中,信号预处理的作用是将接收信号转换为适合后续计算处理的信号并估计基本参数;特征分析和提取是从预处理后的信号中提取出区别于其他信号的特征参数,是模式识别方法的关键,例如,有基于瞬时参数分析的特征值提取、基于信号时频的特征参数、基于星座图的特征参数等;分类器用于根据提取的特征参数确定信号的调制方式。纵观模式识别方法中使用的各种特征参量发现,特征提取基本上没有统一的规律可循,很难找到一个用于调制方式分类的通用特征和方法,对每种分类问题都必须具体情况具体分析,依据所需分类的调制类型的不同,寻找特定的方法和特征,而寻找特征是很困难的工作,需要花费大量的精力。
综上,现有技术中调制方式的识别主要存在两方面的问题:不适用于低信噪比环境;能够识别的调制类型及数量有限,扩展性差。而导致这两个问题的最主要原因是人为的特征提取(例如人为提取峰值个数等),由于人为的特征提取有以下缺点:一是人为的特征提取会抛弃掉很多有用的信息,只保留了人为观察的信息,这就使得对信号的抽象表示不完全,且一般人为提取的特征都是一个数值,在低信噪比下,该值就会偏离正常值很多,所以用于识别调制方式时性能较差;二是特征提取难度大,且对每种分类问题都必须具体情况具体分析,依据所需分类的调制类型的不同,寻找特定的方法和特征,可扩展性差。
因此,需要对现有技术进行改进,以提供应用范围广、扩展性好的信号调制方式的识别方法。
发明内容
本发明的目的在于克服上述现有技术的缺陷,提供一种信号调制方式的识别方法。
根据本发明的第一方面,提供了一种构建信号调制方式识别模型的方法。该方法包括以下步骤:
步骤1:根据调制信号循环谱图中多个数据点的特征数据与信号调制方式的关联性,获得由多组分析数据构成的训练集,其中,每组分析数据包括循环谱图中多个数据点的特征数据和对应的调制方式;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810390417.1/2.html,转载请声明来源钻瓜专利网。