[发明专利]订单的预测方法及装置、计算机可读介质、物流系统有效

专利信息
申请号: 201810357890.X 申请日: 2018-04-19
公开(公告)号: CN108564326B 公开(公告)日: 2021-12-21
发明(设计)人: 金忠孝;丁文博 申请(专利权)人: 安吉汽车物流股份有限公司;上海汽车集团股份有限公司
主分类号: G06Q10/08 分类号: G06Q10/08;G06Q10/04;G06N3/08
代理公司: 北京信远达知识产权代理有限公司 11304 代理人: 魏晓波
地址: 201805 上*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 订单 预测 方法 装置 计算机 可读 介质 物流 系统
【说明书】:

一种订单的预测方法及装置、计算机可读介质、物流系统,所述订单的预测方法包括:获取历史订单对应的时间序列;基于所述时间序列,提取特征序列;基于所述特征序列,生成二维信号特征图;基于所述二维信号特征图,构建神经网络模型,并根据所构建的神经网络模型进行订单预测。应用上述方案,可以提高订单预测的准确度。

技术领域

发明实施例涉及物流领域,尤其涉及一种订单的预测方法及装置、计算机可读介质、物流系统。

背景技术

由于整车物流的订单预测能够让调度人员提前做好准备,未雨绸缪,从而使得运输资源的调度更加合理,故准确的整车物流的订单预测对于整车物流具有非常重要的作用。

时间序列可以描述变量随时间变化的离散值,例如温度、湿度、股票价格、汽车销量走势等变量。时间序列预测指根据时间序列在当前的时间点t以及过往的时间点(t-1)、(t-2)、……、(t-n-1)的值,决定某一个未知时间点(t+1)或者某一个未知时间段(t+1,t+n)的值。通常,一个时间序列预测值除了依赖于过往的时间以外,可能还会依赖于一个或多个其他的时间序列。因此,一个时间序列预测问题指的是在高维空间的回归问题。在高维空间中,预测值是其过去值和其他相关的时间序列的高度非线性函数。整车物流的订单预测问题从本质上来说可以看作一个时间序列预测问题。整车物流订单预测问题由于本质上可被视作一个时间序列预测问题,所以能够通过时间序列预测模型解决,例如传统的自回归移动平均模型(Auto Regressive Moving Average,ARMA)、前馈神经网络模型、循环神经网络(Recurrent Neural Network,RNN)、变体长短记忆神经网络(Long Short-Term Memory,LSTM)等。这些模型在解决整车物流订单预测问题时,将物流订单数据合并为一维的数据作为输入,然后提取出数据上的时间相关性。

现有的整车物流订单的预测方法在有多个时间序列或者多个特征序列作为输入的情况下,通过简单的合并成一个序列的方法,将合成的一个一维序列作为模型输入进行学习和预测。

上述整车物流订单的预测方法准确度较差。

发明内容

本发明实施例解决的技术问题是如何提高订单预测的准确度。

为解决上述技术问题,本发明实施例提供一种订单的预测方法,所述方法包括:获取历史订单对应的时间序列;基于所述时间序列,提取特征序列;基于所述特征序列,生成二维信号特征图;基于所述二维信号特征图,构建神经网络模型,并根据所构建的神经网络模型进行订单预测。

可选地,所述获取订单对应的时间序列包括:获取历史订单对应的原始数据;对原始数据进行预处理,获取订单对应的时间序列。

可选地,所述预处理包括以下至少一种:异常值处理、缺失值处理。

可选地,所述提取特征序列包括:基于小波变换算法提取特征序列。

可选地,所述生成二维信号特征图包括:将每个特征序列分割为多个长度为n的序列片段,其中n为正整数;将不同特征序列对应的序列片段进行逐行复制,生成m行序列片段,所述m行序列片段满足不同的特征序列行间两两相邻,其中m为正整数;基于所述m行序列片段,生成m*n的二维信号特征图。

可选地,所述将每个特征序列分割为多个长度为n的序列片段包括:基于移位操作,将每个特征序列分割为多个长度为n的序列片段。

可选地,所述构建神经网络模型包括:构建神经网络模型;基于所述二维信号特征图,训练所述神经网络模型,获取所述神经网络模型参数。

可选地,在构建神经网络模型之后,所述订单的预测方法还包括:获取订单的在线数据;基于所述在线数据训练并更新所述神经网络模型。

可选地,所述神经网络为:卷积神经网络。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安吉汽车物流股份有限公司;上海汽车集团股份有限公司,未经安吉汽车物流股份有限公司;上海汽车集团股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810357890.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top