[发明专利]一种基于自由节点B样条建模的自适应采样方法有效
申请号: | 201810295009.8 | 申请日: | 2018-03-30 |
公开(公告)号: | CN108563856B | 公开(公告)日: | 2020-07-10 |
发明(设计)人: | 王健;卢文龙;鹿昱;周莉萍;刘晓军;张超 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06F30/20 | 分类号: | G06F30/20 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 自由 节点 建模 自适应 采样 方法 | ||
本发明公开了一种基于自由节点B样条建模的自适应采样方法,包括如下步骤:1、利用随机相移的均匀采样法对目标对象进行初始采样;2、利用四元树对采样点集进行划分得到测试位置;3、对采样点进行自由节点B样条建模;4、计算已确定的测试位置处的不确定度;5、根据步骤四求得的不确定度从采样空间中筛选新的最佳采样点并获取新的最佳采样点的采样值,然后将新的最佳采样点加入采样点集,得到新的采样点集;6、对新的采样点集重复步骤2到步骤5,直至采样点数量达到设定值,完成自适应采样。本发明通过在建模过程中自动令节点矢量与表面的动态变化相适应,达到比现有的采样方法更高的精度,尤其适用于不连续的高动态范围表面的测量。
技术领域
本发明属于曲面模型测量领域,更具体地,涉及一种基于自由节点B样条建模的自适应采样方法。
背景技术
作为香农采样和重构定理的基础,均匀采样是目前应用最为广泛的表面测量方法。然而,最新的非均匀采样定理表明,均匀采样并不是无失真重构的必要条件。大量的研究表明,均匀采样往往会花费较多的时间,占用较大的存储空间,工作成本较高。因此,以节约成本为目的的智能采样技术已渐渐成为人们的研究热点。
智能采样方法大致分为四类:样本量优化,采样模式优化,预先学习的采样模式优化和自适应采样。在很多情况下,自适应采样都是最佳的处理方案。自适应采样是一种智能采样设计,可以根据观测值实时控制采样工作。一般来说,自适应采样与重构方法息息相关,即通过实时控制采样工作,得到最佳的采样点,使得重构模型具有较高精度。目前,大多数的自适应采样方法都是基于传统的建模方法,如固定节点B样条模型或者NURBS模型,对于静态表面,可以有较好的效果,但对于动态甚至高动态范围表面(如具有尖锐边缘特征的结构曲面),则会产生较大的重构误差。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于自由节点B样条(FKBS)模型进行回归的自适应采样方法,通过在建模过程中自动令节点矢量与表面的动态变化相适应,达到比现有的采样方法更高的精度,能够用于任意动态、静态表面的测量,尤其适用于不连续的高动态范围表面的测量。
为了实现上述目的,本发明提供了一种基于自由节点B样条建模的自适应采样方法,包括如下步骤:
步骤一、利用随机相移的均匀采样法对目标对象进行初始采样,得到包含N个初始点的采样点集{x,y};其中,x为样本点向量,y为x对应的采样值;
步骤二、利用四元树对采样点集进行划分得到测试位置;
步骤三、对采样点进行固定节点B样条建模如下:
y=ftx=Hα+ε
其中,H为节点向量t与样本点向量x按照德布尔算法生成的K阶B样条模型矩阵,在固定节点B样条建模过程中,t是给定值;y为x对应的采样值,α为待求解的模型参数,ε是均值为零的正态随机误差;
利用最小二乘法求解上式,得到α的最优解如下:
然后将t作为未知量进行自由节点B样条建模得到关于t、α的表达式:
argmint,α||y-Hα||2
将代入上式,利用曲率节点放置解法求解得到t,从而得到采样点的自由节点B样条模型;
步骤四、计算已确定的测试位置处的不确定度
步骤五、根据步骤四求得的不确定度从采样空间中筛选新的最佳采样点并获取新的最佳采样点的采样值,然后将新的最佳采样点加入采样点集{x,y},得到新的采样点集。
步骤六、对新的采样点集重复步骤二到步骤五,直至采样点数量达到设定值,完成自适应采样。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810295009.8/2.html,转载请声明来源钻瓜专利网。