[发明专利]一种催化层全有序燃料电池电极和膜电极有效
| 申请号: | 201810279389.6 | 申请日: | 2018-03-30 |
| 公开(公告)号: | CN108539206B | 公开(公告)日: | 2019-12-31 |
| 发明(设计)人: | 苏华能;姚东梅;张玮琦;马强;徐丽;徐谦;李华明 | 申请(专利权)人: | 江苏大学 |
| 主分类号: | H01M4/86 | 分类号: | H01M4/86;H01M4/88;H01M4/92;H01M8/1004;B82Y30/00 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 212013 江*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 催化层 膜电极 燃料电池电极 碳纳米管载体 铂基催化剂 电极 纳米线 燃料电池技术 催化剂纳米 电极催化层 放电性能 高效电子 离子传输 离子导体 气液传输 阵列结构 高活性 传质 压合 质膜 传导 生长 | ||
本发明公开了一种催化层全有序燃料电池电极和膜电极,涉及燃料电池技术领域,电极催化层由有序的碳纳米管载体和在载体上有序生长的铂基催化剂纳米线组成。将离子导体均匀分布在所述催化层中形成有序的离子传输通道,载体和催化剂纳米线的有序阵列结构确定了气液传输通道的有序性。将所述的催化层组分和结构全有序的电极与聚电极质膜压合即成为基于催化层组分和结构全有序的膜电极。本发明所述的这种全有序的燃料电池电极和膜电极可结合有序碳纳米管载体阵列的高效电子传导和传质特性及有序铂基催化剂纳米线的高活性和稳定性,大幅提高了燃料电池电极和膜电极的放电性能和稳定性。
技术领域
本发明涉及燃料电池技术领域,特别涉及一种基于催化层组分和结构全有序的燃料电池电极和膜电极。
背景技术
电极和膜电极是质子交换膜燃料电池(PEMFC)的核心部件,是造成能量转换的多相物质传输和电化学反应的最终场所,决定着PEMFC的性能、寿命以及成本。早在2013年,美国能源部在《Fuel Cell Technical Roadmap》中就明确提出2020年膜电极的性能目标为功率密度达到1.0W/cm2,加速老化寿命达到5000h,成本低于14$/kW。随着PEMFC商业化的进程,人们对其性能和寿命提出了更高的追求。
然而,目前PEMFC电极和膜电极的制备中通常是将催化剂与质子导体(如Nafion)按一定比例混合来形成电极催化层,电极反应过程中质子/电子和水/气等物质的多相传输均处于无序状态,造成较大的电化学极化和浓差极化,限制着膜电极的性能提升。因此,要达到未来电极和膜电极技术商业化的要求,就必须从实现三相界面中的质子、电子、气体和水等物质的多相传输通道的有序化角度出发,极大地提高催化剂利用率和稳定性,进一步提升PEMFC的综合性能。因此,有序化是今后PEMFC电极和膜电极的发展趋势。
催化层是膜电极的主体,是电化学反应发生的唯一场所。目前,针对有序化膜电极的研究主要集中在构建有序的催化层组分和结构,如有序化载体、有序化催化剂和有序化质子导体。中国专利申请号201210197913.8的申请公开了一种基于三维质子导体的有序化单电极和膜电极的制备方法。这种膜电极的主要特征在于以三维结构的质子导体为基础,采用真空蒸镀技术在纳米纤维表面均匀蒸镀一层纳米活性金属催化剂,在保证质子传导效率的同时极大地增加了催化层的面积,有利于传质,减少质子导体的用量。同时,采用蒸镀技术可以对纳米活性金属薄膜的厚度进行调控,在提高贵金属或其合金催化剂性能同时大幅减少活性金属催化剂的用量。测试表明,在铂载量0.1-0.2mg/cm2下,电池在200mA/cm2电流密度下放电电压可高达0.7-0.82V。俞红梅等人(中国专利申请号201110418390.0)发明了一种制备贵金属纳米颗粒负载于TiO2纳米阵列形成有序化电极的方法,在钛片上生长TiO2纳米管阵列,并以此为基底,采用脉冲电沉积方法制备Ni前驱体,然后经过转换把铂、钯、金等贵金属担载其上形成电极。该有序电极中贵金属催化剂不仅能均匀分布在TiO2纳米管阵列的表面,而且在纳米管内也能分散均匀,能够提供更多的表面催化活性点位和催化反应比表面积,可应用于燃料电池和光催化领域。
然而,在这些有序电极结构中,贵金属催化剂通常是以纳米粒子的形态沉积在有序化载体表面,在电池长时间运行过程中,Pt粒子可能发生脱落或团聚,影响膜电极的性能和耐久性。研究表明,当Pt或其合金按一定晶面取向生长时,可形成有序化纳米线状催化剂,其具有特殊的晶面和较少的表面缺陷,比普通Pt/C催化剂具有更高的氧还原(ORR)活性和化学稳定性。例如Liang等人(Advanced Materials,2011,23,1467-1471)考察了Pt纳米线(Pt-NW)的ORR性能,其比活性比普通Pt/C催化剂高出2.1倍,并且发现其一维形貌有利于电子的传递和O2分子的扩散。Du等人(Journal of Power Sources,2010,195,289-292)直接在气体扩散层上原位生长Pt-NW作为电极,但由于催化剂载体的无序性以及Pt-NW只能在其表层生长,其电池性能提升有限。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810279389.6/2.html,转载请声明来源钻瓜专利网。





