[发明专利]基于神经网络的搜索方法、设备及存储介质有效

专利信息
申请号: 201810278074.X 申请日: 2018-03-30
公开(公告)号: CN108536791B 公开(公告)日: 2019-07-30
发明(设计)人: 刘凯;吕雅娟;吴甜 申请(专利权)人: 北京百度网讯科技有限公司
主分类号: G06F16/33 分类号: G06F16/33;G06N3/04
代理公司: 北京同立钧成知识产权代理有限公司 11205 代理人: 于江微;刘芳
地址: 100085 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 文档 内容校验 神经网络 搜索结果 搜索 存储介质 开始位置 目标搜索 搜索对象 参考 校验 概率 向量 匹配
【说明书】:

发明实施例提供一种基于神经网络的搜索方法、设备及存储介质,该搜索方法包括:通过获取搜索对象及与该搜索对象匹配的多个文档,根据每个文档对应的第一神经网络向量,确定每个文档的内容校验值;根据每个文档的内容校验值、搜索结果的开始位置和结束位置、开始位置对应的概率值和结束位置对应的概率值,确定每个文档中各片段对应的参考值;根据多个文档中各片段对应的参考值,确定最大参考值对应的片段为目标搜索结果。由于每个文档的内容校验值均可以反映该文档作为搜索结果时其他文档对其的支持程度,即该文档作为搜索结果可以获得其他文档的支持校验,因此,根据内容校验值所确定的目标搜索结果的可靠性较高。

技术领域

本发明实施例涉及搜索技术,尤其涉及一种基于神经网络的搜索方法、设备及存储介质。

背景技术

随着搜索技术的快速发展,用户越来越多地使用搜索引擎来进行结果搜索。通常情况下,用户在搜索栏输入关键字并触发搜索;搜索引擎返回与该关键字匹配的结果。其中,关键字可以是文字、词汇或文本等。

在相关技术中,搜索引擎通过将与关键字相关的多篇文档拼接成一篇文档;然后,采用神经网络技术,直接定位该拼接文档中的某一连续文字片段,作为最接近的结果。

然而,上述搜索方法倾向在拼接文档中查找一个表面文字意义上最像答案的文字片段作为最接近的搜索结果,该搜索结果的可靠性较差。

发明内容

本发明实施例提供一种基于神经网络的搜索方法、设备及存储介质,可以有效提高搜索结果的可靠性。

第一方面,本发明实施例提供一种基于神经网络的搜索方法,包括:

获取搜索对象及与该搜索对象匹配的多个文档;

根据每个文档对应的第一神经网络向量,确定每个文档的内容校验值,第一神经网络向量中的元素用于表征文档中的单元与搜索对象中的单元的相关性,内容校验值用于表示每个文档作为搜索结果时其他文档对文档的支持程度;

根据每个文档的内容校验值、搜索结果的开始位置和结束位置、开始位置对应的概率值和结束位置对应的概率值,确定每个文档中各片段对应的参考值,每一开始位置及其对应的结束位置确定一片段,参考值用于表示片段作为搜索结果的可能性;

根据多个文档中各片段对应的参考值,确定最大参考值对应的片段为目标搜索结果。

在一种可能的设计中,上述根据每个文档对应的第一神经网络向量,确定每个文档的内容校验值,可以包括:根据每个文档对应的第一神经网络向量,确定文档中各单元作为搜索结果的概率;根据每个文档对应的第二神经网络向量、该文档中各单元作为搜索结果的概率与其他文档中各单元作为搜索结果的概率,确定每个文档的内容校验值,第二神经网络向量中的元素用于表征文档中的单元,例如为一一维向量等。

在一种可能的设计中,上述根据每个文档对应的第一神经网络向量,确定文档中各单元作为搜索结果的概率,可以包括:将第i个文档中第k个单元在对应第一神经网络向量中的元素值与一神经网络参数作为任一第一函数的自变量,得到该第一函数输出的第一值,该第一函数可以包括输出为第一预设范围的神经元函数;将第一值和另一神经网络参数作为任一输出为第二预设范围的第二函数的自变量,得到该第二函数输出的第二值,作为第i文档中第k个单元作为搜索结果的概率。其中,i取值为1~N中任一整数值,N为所述多个文档的个数;k取值为1~M中任一整数值,M为第i个文档中的单元个数,不同文档对应的M值相同或不同。

在一种可能的设计中,上述根据每个文档对应的第二神经网络向量、该文档中各单元作为搜索结果的概率与其他文档中各单元作为搜索结果的概率,确定每个文档的内容校验值,可以包括:根据每个文档对应的第二神经网络向量和该文档中各单元作为搜索结果的概率,得到每个文档作为搜索结果的第三神经网络向量;根据所有文档作为搜索结果的第三神经网络向量,得到每个文档的内容校验值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京百度网讯科技有限公司,未经北京百度网讯科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810278074.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top