[发明专利]一种基于现代信号处理技术的汽车智能故障诊断系统及方法有效
申请号: | 201810251573.X | 申请日: | 2018-03-26 |
公开(公告)号: | CN108445868B | 公开(公告)日: | 2020-12-29 |
发明(设计)人: | 朱志峰;姚勇;蔡卫平 | 申请(专利权)人: | 安徽省爱夫卡电子科技有限公司 |
主分类号: | G05B23/02 | 分类号: | G05B23/02;G06K9/62;G06K9/00;G06N3/08 |
代理公司: | 南京知识律师事务所 32207 | 代理人: | 江艳丽 |
地址: | 243000 安徽省马鞍*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 现代 信号 处理 技术 汽车 智能 故障诊断 系统 方法 | ||
本发明公开了一种基于现代信号处理技术的汽车智能故障诊断系统及方法,属于汽车诊断领域。一种基于现代信号处理技术的汽车智能故障诊断系统,包括诊断平台、下位机通信模块和汽车ECU;下位机通信模块,与汽车ECU连接,进行数据通信;诊断平台,与下位机通信模块连接,进行数据通信,向汽车ECU发送诊断命令,并接收汽车ECU返回的状态数据流与故障码,并根据接收的数据进行故障诊断。并公开了该诊断方法。本发明利用信号处理技术对获取的数据流进行特征提取,再利用人工智能技术对目标特征进行训练与学习,进而自动地完成分类和识别,满足的汽车系统的多样性和复杂性要求,具有更高的智能水平、更好的环境适应性和更广阔的应用前景。
技术领域
本发明涉及信号处理技术、人工智能技术、汽车诊断技术和通信协议技术,属于交叉学科领域,主要应用于汽车诊断设备中电子产品的研发,也可应用于其他涉及信号处理和人工智能技术的故障诊断应用领域。
背景技术
目前,汽车电控系统越来越复杂,并且汽车故障复杂多样,而目前常用的诊断设备只能显示故障码和汽车数据流,很难对汽车的故障原因进行实时准确地估计与识别,因此在汽车故障诊断过程中更多的需要依赖维修人员的技术水平,从而给汽修带来一定风险。而汽车的行驶安全问题受到越来越多的关注,加强汽车的安全技术检测,成为急待解决的重要问题。
另一方面,智能化的汽车诊断技术不仅可以取代手工操作,还可实现数据通信、信息共享和各系统间的功能协调和优化,实现智能故障诊断,降低故障发生率,使得在复杂路况下自动精准安全地操控汽车。但是汽车电控系统中一些数据信号为时变信号或非平稳信号。分析这些信号时,不仅要找出所含的谱分量,还需要知道各谱分量随时间的变化。而传统的频谱分析可以知道哪些频率在信号中出现,但不知道各谱分量随时间的变化,无法满足汽车诊断的要求。
近年来,信号处理技术的发展大大提高了信号特征提取与状态分类识别的有效性;而人工智能技术的迅速发展,特别是专家系统、人工神经网络在故障诊断领域的进一步应用,为智能汽车故障诊断的发展奠定了基础。如何通过时频信号处理技术和人工智能技术对汽车的故障进行精确诊断是急需解决的技术问题。
发明内容
为克服现有技术中存在的技术问题,本发明提供一种无需依赖维修人员的技术水平,能够迅速、客观检测汽车故障码的故障诊断系统及方法。
为实现上述目的,本发明采用如下技术方案:
一种基于现代信号处理技术的汽车智能故障诊断系统,包括诊断平台、下位机通信模块和汽车ECU;
下位机通信模块,与汽车ECU连接,进行数据通信;
诊断平台,与下位机通信模块连接,进行数据通信,向汽车ECU发送诊断命令,并接收汽车ECU返回的状态数据流与故障码,并根据接收的数据进行故障诊断。
进一步的技术方案,所述的诊断平台包括:主控模块、信号处理模块、特征提取与状态分类识别模块、故障码分类模块和人工智能诊断模块;
主控模块,与下位机通信模块连接,进行数据通信,根据接收的数据对车型进行诊断,向汽车ECU发送诊断命令,并接收汽车ECU返回的状态数据流与故障码;
信号处理模块,与主控模块连接,对汽车ECU返回的状态数据流进行信号处理,并得到具体的信号特征值;
特征提取与状态分类识别模块,与信号处理模块连接,对信号特征值进行分析并进行特征分类;
故障码分析模块,与主控模块连接,对汽车EUC的故障码进行分类并得到冻结帧及相关故障数据流;
人工智能诊断模块,与特征提取与状态分类识别模块和故障码分类模块连接,根据故障码的分类信息和特征提取与状态分类识别模块输出的相应数据流状态分类信息依据人工智能诊断算法对汽车故障进行定位和判断。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽省爱夫卡电子科技有限公司,未经安徽省爱夫卡电子科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810251573.X/2.html,转载请声明来源钻瓜专利网。