[发明专利]一种基于深度学习的计轴器故障监测方法有效
申请号: | 201810179920.2 | 申请日: | 2018-03-05 |
公开(公告)号: | CN108345863B | 公开(公告)日: | 2020-06-30 |
发明(设计)人: | 高宏力;孙弋;洪鑫;由智超;蔡璨羽;宋虹亮;贡宏伟;夏文超 | 申请(专利权)人: | 西南交通大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04 |
代理公司: | 成都正华专利代理事务所(普通合伙) 51229 | 代理人: | 何凡;李蕊 |
地址: | 610031 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 计轴器 故障 监测 方法 | ||
本发明公开了一种基于深度学习的计轴器故障监测方法,包括以下步骤:S1、获取计轴器发出的信号,经过处理,得到轮脉冲监视信号;S2、通过通信系统将轮脉冲监视信号发送给计算机;S3、通过计算机对获取轮脉冲监视信号,进行处理,得到高频细节信号的包络谱图;S4、通过深度卷积神经网络对输入的包络谱图进行分类,并输出分类结果;S5、判断深度卷积神经网络的输出分类结果与设定的故障分类是否有相同项,若相同,进入步骤S6;若不相同,返回步骤S2;S6、在计算机端显示计轴器的故障分类。本发明提供的计轴器故障监测方法,降低了对工人经验知识的依赖,对计轴器健康状况进行实时监测,并对计轴器的故障类型进行预判断,提高率计轴器的维护效率。
技术领域
本发明属于计轴器故障监测技术领域,具体涉及一种基于深度学习的计轴器故障监测方法。
背景技术
计轴器是用于完成计算车辆进出区段的轮轴数,分析计算区段是否有车占用的一种技术设备,计轴器能够实现高精度定位发送计轴脉冲。由于强电干扰、磁头受到金属物干扰、通过监测点时车速过低、计轴器自身故障灯原因,计轴设备故障在所难免。地铁运营过程中,列车运行间隔小,当场解决计轴设备故障难度较大,很有可能降低基于通信的列车自动控制系统(CBTC)可用性。为确保地铁工程列车或CBTC列车在无线通信故障情况下仍能确保列车安全运行,普遍采用计轴器作为备用列车占用/空闲检测设备,计轴器故障检测技术难点在于故障种类较多,并且在维护过程中对人员有一定要求,维修效率低。目前,当计轴器不能正确的监测轮脉冲信号时,不能完成计轴工作时,系统会报错,但是不会显示故障类型,需要维修人员花费大量时间进行故障类型判断;并且当出现电压问题和磁场干扰时,因短时间不影响计轴器的正常工作,目前的计轴器监测系统不会报障。
发明内容
针对现有技术中的上述不足,本发明提供的基于深度学习的计轴器故障监测方法解决了现有计轴器故障监测过程中无法对计轴器故障类型进行预判断的问题。
为了达到上述发明目的,本发明采用的技术方案为:一种基于深度学习的计轴器故障监测方法,包括以下步骤:
S1、获取计轴器发出的信号,并将其处理为轮脉冲监视信号;
S2、通过通信系统将轮脉冲监视信号发送给计算机;
S3、通过计算机对轮脉冲监视信号进行小波分解与重构,得到高频细节信号的包络谱图;
S4、通过深度卷积神经网络对输入的包络谱图进行分类,并输出分类结果;
S5、判断分类结果与设定的故障分类是否有相同项,若是则进入步骤S6;否则返回步骤S2;
S6、在计算机端显示计轴器的故障分类。
进一步地,所述步骤S1中计轴器包括两套有源磁钢和一个集成电路板;
每套所述有源磁钢均包括一个发送磁头和一个接收磁头;
将计轴器发出的信号处理为轮脉冲监视信号的方法具体为:
S1-1、通过集成电路板驱动两个发送磁头在空间内产生交变磁场;
S1-2、通过接收磁头感应空间磁场的变化,并输出正弦感应信号;
S1-3、通过集成电路板接收并处理正弦感应信号,并通过DSP采样分析,产生轮脉冲监视信号。
进一步地,所述步骤S2中的通信系统为CBTC通信系统。
进一步地,所述步骤S3中小波分解与重构运用MATLAB软件中的小波工具箱完成,具体方法为:
S3-1、对获取的轮脉冲监视信号采用db10小波函数,进行尺度为1到5的信号分解计算,得到每层信号相应的高频系数和低频系数;其中db10小波表示阶数为10的小波;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810179920.2/2.html,转载请声明来源钻瓜专利网。