[发明专利]车险图像处理方法和装置在审
申请号: | 201810148839.8 | 申请日: | 2018-02-13 |
公开(公告)号: | CN108399382A | 公开(公告)日: | 2018-08-14 |
发明(设计)人: | 章海涛;刘永超 | 申请(专利权)人: | 阿里巴巴集团控股有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04 |
代理公司: | 北京亿腾知识产权代理事务所 11309 | 代理人: | 陈霁;周良玉 |
地址: | 英属开曼群岛大开*** | 国省代码: | 开曼群岛;KY |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 车险 方法和装置 特征向量 图像处理 图像 卷积神经网络 图像输入 | ||
1.一种训练用于处理车险图像的卷积神经网络的方法,包括:
获取至少一个正样本对,每个所述正样本对包括其各自的第一图像和第二图像,所述第一图像和所述第二图像对应于相同的车险现场;以及
利用所述至少一个正样本对训练所述卷积神经网络,使得分别对应于各个所述正样本对的至少一个第一距离之和减小,其中,所述第一距离为通过所述卷积神经网络获得的所述第一图像的特征向量与通过所述卷积神经网络获得的所述第二图像的特征向量之间的距离。
2.一种训练用于处理车险图像的卷积神经网络的方法,包括:
获取至少一个负样本对,每个所述负样本对包括其各自的第三图像和第四图像,所述第三图像和所述第四图像分别对应于不同的车险现场;以及
利用所述至少一个负样本对训练所述卷积神经网络,使得分别对应于各个所述负样本对的至少一个第二距离之和增大,其中,所述第二距离为通过所述卷积神经网络获得的所述第三图像的特征向量与通过所述卷积神经网络获得的所述第四图像的特征向量之间的距离。
3.一种训练用于处理车险图像的卷积神经网络的方法,包括:
获取至少一个正样本对和至少一个负样本对,其中,每个所述正样本对包括其各自的第一图像和第二图像,所述第一图像和所述第二图像对应于相同的车险现场,每个所述负样本对包括其各自的第三图像和第四图像,所述第三图像和所述第四图像分别对应于不同的车险现场;以及
利用所述至少一个正样本对和至少一个负样本对训练所述卷积神经网络,使得以对应于各个所述正样本的至少一个第一距离之和减去对应于各个所述负样本的至少一个第二距离之和所获得的值减小,其中,所述第一距离为通过所述卷积神经网络获得的所述第一图像的特征向量与通过所述卷积神经网络获得的所述第二图像的特征向量之间的距离,以及其中,所述第二距离为通过所述卷积神经网络获得的所述第三图像的特征向量与通过所述卷积神经网络获得的所述第四图像的特征向量之间的距离。
4.根据权利要求1-3中任一项所述的训练用于处理车险图像的卷积神经网络的方法,其中所述距离为欧式距离。
5.一种训练用于处理车险图像的卷积神经网络的装置,包括:
获取单元,配置为,获取至少一个正样本对,每个所述正样本对包括其各自的第一图像和第二图像,所述第一图像和所述第二图像对应于相同的车险现场;以及
训练单元,配置为,利用所述至少一个正样本对训练所述卷积神经网络,使得分别对应于各个所述正样本对的至少一个第一距离之和减小,其中,所述第一距离为通过所述卷积神经网络获得的所述第一图像的特征向量与通过所述卷积神经网络获得的所述第二图像的特征向量之间的距离。
6.一种训练用于处理车险图像的卷积神经网络的装置,包括:
获取单元,配置为,获取至少一个负样本对,每个所述负样本对包括其各自的第三图像和第四图像,所述第三图像和所述第四图像分别对应于不同的车险现场;以及
训练单元,配置为,利用所述至少一个负样本对训练所述卷积神经网络,使得分别对应于各个所述负样本对的至少一个第二距离之和增大,其中,所述第二距离为通过所述卷积神经网络获得的所述第三图像的特征向量与通过所述卷积神经网络获得的所述第四图像的特征向量之间的距离。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于阿里巴巴集团控股有限公司,未经阿里巴巴集团控股有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810148839.8/1.html,转载请声明来源钻瓜专利网。