[发明专利]基于复合网络的拥堵点、拥堵线、拥堵区域的发现方法有效
申请号: | 201810113548.5 | 申请日: | 2018-02-05 |
公开(公告)号: | CN108109382B | 公开(公告)日: | 2020-08-04 |
发明(设计)人: | 孙仁诚;邵峰晶;隋毅;吴舜尧;吴梅;孙颢冬 | 申请(专利权)人: | 青岛大学 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;H04L29/08;H04W4/38 |
代理公司: | 青岛高晓专利事务所(普通合伙) 37104 | 代理人: | 张世功 |
地址: | 266000 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 复合 网络 拥堵 区域 发现 方法 | ||
1.一种基于复合网络的拥堵点、拥堵线、拥堵区域的发现方法,其特征在于复合网络是由两个以上子网和子网间连边构成的,子网是构成复合网络的独立的网络,其中的复合网络包括两个网络,即路口网络和传感器网络,传感器网络以每个路口的交通传感器为节点,传感器之间关系为连边,路口网络以路口为节点,根据路口之间是否可达建立连边,在路口网络的基础上,给出拥堵指数、拥堵点、拥堵线路和拥堵区域的定义,该方法具体按照如下步骤进行:
S1、定义拥堵指数Ti、拥堵点、拥堵线路和拥堵区域
(1)拥堵指数Ti:Ti是节点i的综合交通指数,Ti是对于节点i的交通状态评价指标,利用平均速度和时间占有率来进行计算;该指标衡量了传感器网络中某个节点的拥堵程度,Ti的值越大表示节点i的拥堵程度越高,计算公式如下:
Ti=β*Jv+γ*Jo (1)
当节点i和j之间有边相连时,αij=1,反之,αij=0,Ti是节点i的综合交通指数,道路的拥堵状态可以通过平均速度和时间占有率两个指标进行衡量;
Jv是平均速度拥堵指数,是本周期断面速度,vf是路段自由流速度,道路的级别不同,路段的自由流速度也不相同,城市道路vf取80km/h,高速路或者快速路vf取100km/h,Jo是时间占有率指数,其中是本周期断面时间占有率,omax为路段在饱和状态下对应的时间占有率,节点的交通指数计算如下,其中β和γ是权重系数,
(2)拥堵点:即拥堵路口,当节点i的拥堵指数Ci>e,节点i处于拥堵状态,e是可调整的指定的拥堵指数阈值;
(3)拥堵线路:指在路网中,由两个以上的拥堵点构成一条拥堵线路;
(4)拥堵区域:指在公路网中,通过拥堵区域算法找出的堵点集合,是若干条拥堵线路的一个并集;
S2、量化拥堵等级
根据S1中定义的拥堵点、拥堵线路、拥堵区域,将拥堵等级进行划分,拥堵等级的划分标准并不固定,下述将给出一种根据拥堵指数将拥堵状态划分为五级的方法,根据拥堵评价指标的不同,拥堵等级的范围会存在变动;
其中,拥堵级别为一级时,拥堵指数范围为[0,0.2),物理含义为畅通;拥堵级别为二级时,拥堵指数范围为[0.2,0.4),物理含义为基本畅通;拥堵级别为三级时,拥堵指数范围为[0.4,0.6),物理含义为轻度拥堵;拥堵级别为四级时,拥堵指数范围为[0.6,0.8),物理含义为中度拥堵;拥堵级别为五级时,拥堵指数范围为[0.8,1.0),物理含义为重度堵塞;
(1)对拥堵点的拥堵等级划分如下:根据单个节点的拥堵指数属性的值,根据上表的范围划分,将节点状态进行划分,并得到不同程度拥堵点集合;
(2)对堵线的拥堵等级划分如下:不同堵线由若干个拥堵点组成,堵线有长有短,通过定义堵线拥堵指数来评价一条堵线的整体的拥堵状态,拥堵指数如下:
其中P是某条堵线中c的拥堵点集合,T(i)代表节点i的拥堵指数,最后根据各个堵线的Pc值对堵线进行分级;
(3)对拥堵路口的等级划分如下:城市路网每个路口周围一般均匀分布着3个以上传感器,提出路口拥堵指数CrC如下:
其中,M是目标路口对应的传感器分布节点集合,CrC是路口拥堵指数,根据CrC值对应表一能够对路口的拥堵等级进行分级,对拥堵点、拥堵线路、拥堵区域进行拥堵等级划分,用以区分不同的拥堵点、拥堵线路、拥堵区域的重要程度;
S3、实现与拥堵发现算法
(1)建立路口网络与传感器网络的映射关系
为了实现传感器与路口、道路间的对应关系,传感器网络以物理设备为节点,物理设备包括有设置在路口的传感器,主要用以采集包括平均速度、时间占有率、过车数在内的交通数据,基于这些实时交通数据,来计算传感器节点的拥堵指数,传感器节点之间的有向边代表设备之间能够直达,在建立传感器网络的基础上,进一步构建路口网络,以路口为节点,若路口之间存在可达关系则建立无向边,形成传感器道路复合网络,即在传感器节点和路口节点间增加连边,建立传感器和路口的映射关系,具体建立思路如下:
假设有r1、r2两个路口,每个路口有8个传感器,传感器之间已经按照车流方向建立传感器网络;路口间也按照路口邻近关系建立了网络;在构建传感器道路复合网络时,在路口集合和传感器集合建立映射关系,在传感器与路口之间建立一对多或一对一关系,即{s11,s12,s13,s14,s15,s16,s17,s18}→{r1};若已经基于传感器网络分析出路口的拥堵时只要通过传感器与路口间的连边关系即可得到路口的拥堵情况,对于拥堵线路和拥堵区域的计算采用与拥堵路口相同的计算方式,只要通过拥堵线路或者区域的传感器找到相应的路口即可;
(2)拥堵点分析计算
每一个时间段会生成一个传感器网络,通过连续多个传感器网络的加载运算,对节点上相关属性进行计算,根据拥堵阈值得到拥堵点集,下面将给出拥堵点的发现算法:
首先定义下面符号,G:表示传感器网络;D:表示数据集;C:表示周期,表示要分析的时间间隔,若要分析高峰期的数据,周期即为天,若要分析每个周日,周期即为周,若要分析每年国庆节,则周期即为年;T:表示时间段,如要分析早高峰,T即表示7点到9点;α:表示拥堵状态阈值;
(3)拥堵点集合P分析计算
以定义的G,D,T,α为基础,来计算出拥堵点的集合P,拥堵点的计算方法按照如下步骤进行:
步骤一、设初始周期C标号i=1,再从D中读取第i周期数据;得到第i周期数据di,并计算T时间段内交通拥堵指标统计数据集pi,包括总流量、平均流量、占有率、平均占有率和平均速度;
步骤二、将步骤一中的pi数据加载到网络G,生成新网络Gi,再标记第i周期数据为已读,i=i+1,加载所有的Gj,0≤j≤i-1,最后得到为网络G',其中,网络中的节点拥堵指标公式(1)进行计算,得到网络G'中所有节点的拥堵指数;
对于G'中每一节点若拥堵指数大于拥堵阈值α,则将节点存入拥堵点集P;
(4)拥堵点、拥堵线和拥堵区域分析计算
拥堵线、拥堵区域分析计算的方法基于上述拥堵点中定义的传感器网络G'和拥堵点集P,来获取拥堵线路集合L和拥堵区域Q,具体计算步骤如下:
步骤一、首先标记拥堵点集P中每一拥堵点均未搜索,定义生成树T=Φ,依次从拥堵点集P中读取一个未标记的拥堵点i,以节点i为根建立一棵树Ti,Ti称为以i为根的拥堵线路生成树,简称拥堵树;
步骤二、调用Search_Neighbors(i,G',Ti)函数,采用深度优先搜索的方式,获取节点i的子树Ti,将Ti加入到T中,并将i为已搜索节点;
当拥堵点集合中所有节点均已设置为已搜索后,建立一个指针列表PT指向T中每一棵树的树根,对于T中每一棵树中的每一个非叶节点s,从所有树中找出叶节点s,加入指针使叶节点s指向非叶节点s,若非叶节点s为根,则删除PT中指向s的指针;其中,Search_Neighbors函数用以实现给定一个节点递归搜索其拥堵的邻居节点,并将拥堵的邻居节点插入以i为根的树中,Search_Neighbors算法中对于s拥堵的邻居节点,无论之前该节点是否搜索过都先插入到队列中,用以为后续在发现拥堵区域过程中使得不同拥堵线路上存在公共的拥堵点,从而能够合并形成拥堵区域;
步骤三、按照步骤二中的指针列表中的每一指针指向的树为根,从根到叶的路径的集合即为拥堵线路集L;在树集T中,每一个树即为拥堵区域,将拥堵区域并入Q;
步骤四、基于传感器道路复合网,拥堵传感器集合为M={M1,M2,...,Mn},通过传感器路网与路网的映射关系,通过堵线发现算法获取拥堵线路L和拥堵拥堵区域Q,L和Q都是M的子集,根据传感器道路映射关系得到拥堵道路集S={S1,S2,...,Sl},其中{Mi,...,Mj}→{Sk};基于拥堵道路集S和拥堵区域发现算法,找到拥堵区域集A={A1,A2,...,An},其中,拥堵区域即为多条拥堵线路的合并。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛大学,未经青岛大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810113548.5/1.html,转载请声明来源钻瓜专利网。
- 上一篇:交叉口分类方法及系统
- 下一篇:一种信息确定方法及装置