[发明专利]用于人工神经网络中比特深度减少的方法和系统有效
| 申请号: | 201780000106.3 | 申请日: | 2017-02-07 |
| 公开(公告)号: | CN106796668B | 公开(公告)日: | 2019-06-14 |
| 发明(设计)人: | 师超;梁路宏;洪国伟;赵京雄 | 申请(专利权)人: | 香港应用科技研究院有限公司 |
| 主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/063;G06F17/50 |
| 代理公司: | 深圳新创友知识产权代理有限公司 44223 | 代理人: | 江耀纯 |
| 地址: | 中国香港新界沙田香港*** | 国省代码: | 中国香港;81 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 用于 人工 神经网络 比特 深度 减少 方法 系统 | ||
本发明提供的比特深度优化引擎降低了神经网络的硬件成本。当在训练程序期间将训练数据应用于神经网络时,产生精度成本和硬件成本。硬件复杂度成本生成器为靠近比特深度步阶的权重产生成本,其中比特深度步阶表示权重的二进制位数减少,例如从2N减到2N‑1,减少一个二进制比特。为每个权重产生成本梯度,靠近比特深度步阶的权重容易被选中,因为它们有大梯度,而远离比特深度步阶的权重有接近零的梯度。在优化期间减小选中的权重。在多个优化周期后,生成一个低比特深度神经网络,其中每个权重使用较少的二进制位,使得当在专用集成电路(ASIC)上制作低比特深度神经网络时具有较低的硬件成本。
相关申请
本申请要求2016年3月16日提交的,名称为“通过使用硬件成本惩罚深度学习神经网络优化”的美国临时专利申请62/309,239的优先权,通过引用将其并入本申请。
技术领域
本发明涉及神经网络,特别涉及权重大小的优化。
背景技术
对于使用传统计算机程序难以处理的大量复杂数据,人工神经网络特别有用。不是使用指令编程,而是将训练数据输入到神经网络,并与预期输出进行比较,然后在神经网络内进行调整,再次处理训练数据,和输出比较,再进一步调整神经网络。在多次这样的训练周期之后,神经网络被改变成可以有效地处理类似训练数据和预期输出的数据。神经网络是机器学习的一个例子,因为神经网络学习如何生成训练数据的预期输出。然后可以将类似训练数据的实际数据输入到神经网络,以处理实时数据。
图1显示一个现有技术的神经网络。输入节点102、104、106、108接收输入数据I1、I2、I3、...I4,而输出节点103、105、107、109输出神经网络运算的结果:输出数据O1、O2、O3、...O4。在这个神经网络中有三层运算。节点110、112、114、116、118中的每一个节点都从一个或多个输入节点102、104、106、108中获取输入,执行一些运算,诸如加、减、乘或更复杂运算,然后发送和输出到第二层的节点。第二层节点120、122、124、126、128、129也接收多个输入,合并这些输入以产生一个输出,并将输出发送到第三层节点132、134、136、138、139,类似地合并输入并产生输出。
每层的输入通常会被加权,因此在每个节点处生成加权总和(或其他加权运算结果)。这些权重可以表示为W31、W32、W32、W33、...W41等,在训练期间权重值可以调整。通过不断地试错或其他训练程序,最终可以将较高的权重分配给产生预期输出的路径,而将较小权重分配给不产生预期输出的路径。机器将学习哪些路径会生成预期输出,并为这些路径上的输入分配高权重。
这些权重可以存储在权重存储器100中。由于许多神经网络都具有多个节点,所以在权重存储器100中存储有多个权重。每个权重需要多个二进制比特来表示该权重的可能值的范围。权重通常需要8到16比特。权重存储器100的大小通常与神经网络的总体大小和复杂性成比例。
深度神经网络具有多层节点,常用于诸如对象分类、语音识别、情感分析、图像识别、面部检测和其他图形处理的应用。图2显示用于面部识别的神经网络。图像输入10可以从一个较大的图像中提取,例如通过软件分离出人脸。特征提取器15执行低级特征提取、池化(pooling)和下采样。例如,可以识别并提取诸如眼睛和嘴巴的面部特征作为提取的特征12。对这些提取的特征12进行合成和下采样以生成输出14。
中级特征连接器17检查下采样的提取特征,生成连接16和中级特征18,然后可以使用中级特征18来生成高级特征19。分类器20对特征进行分类和完全连接,使得可以输出面部特征。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于香港应用科技研究院有限公司,未经香港应用科技研究院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201780000106.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:动态空间目标选择
- 下一篇:基于社交线索的地图个性化





