[发明专利]用于鲁棒控制的系统辨识方法有效
申请号: | 201711477000.0 | 申请日: | 2017-12-29 |
公开(公告)号: | CN108279567B | 公开(公告)日: | 2021-04-09 |
发明(设计)人: | 王家栋;张艳辉;金晓明;古勇 | 申请(专利权)人: | 浙江中控软件技术有限公司;浙江大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 杭州华鼎知识产权代理事务所(普通合伙) 33217 | 代理人: | 项军 |
地址: | 310053 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 用于 鲁棒控制 系统 辨识 方法 | ||
1.用于鲁棒控制的系统辨识方法,用于对非线性系统参数的取值区间进行确定,其特征在于,所述系统辨识方法,包括:
建立离散切换模型方程,对离散切换模型进行简化处理,得到方程的简洁表达式;
获取模型数据,将模型数据代入简洁表达式中求解,得到方程参数数据集;
对参数数据集中的数据进行过滤得到滤除数据,将滤除数据进行重分配操作,得到重分配参数数据集;
其中,所述建立离散切换模型方程,对离散切换模型进行简化处理,得到方程的简洁表达式,包括:
建立如公式一所示的离散切换模型方程
其中,uk是采样时刻k步的输入值,yk是采样时刻k步的输出值,vk是测量噪声或者是模型误差,且σk是切换信号,表示子模型的序号,取值范围为[1,s],s为正整数,和表示Switched ARX模型,R+表示正实数;
定义回归向量和参数向量的表达式,代入公式一中,得到如公式二所示的简洁表达式
其中,定义为
定义为k的取值为正整数,Rn表示n维的实数向量;
所述系统辨识方法,还包括:
将重分配参数数据集中的参数向量和数据分别在参数平面和数据平面上进行投影;
从投影中选取相对距离小于预设距离阈值的目标参数向量,选取与目标参数向量对应的数据,基于目标参数向量和数据进行重新估计得到预估计参数向量
在参数平面上,以预估计参数向量为中心点,向每个维度延伸,构建出超立方体,令每个数据平面均穿过超立方体,获取每个数据平面与超立方体外表面相交处的交界数值,令交界数值作为每个数据的上下限;
其中,数据平面的表达式为
参数平面的表达式为
2.根据权利要求1所述的用于鲁棒控制的系统辨识方法,其特征在于,所述获取模型数据,基于模型数据对简洁表达式求解,得到方程参数数据集,包括:
获取与非线性系统对应的包括输入数据和输出数据的模型数据,将输入数据与输出数据代入得到的简洁表达式;
将每组输入数据与对应的输出数据代入简洁表达式后,得到对应的方程参数数值,在将模型数据全部代入简洁表达式后,得到方程参数数值构成的方程参数数据;
根据最大可行集求解方法对方程参数数据进行分类,获取到由预设数量的方程参数数值构成的方程参数数据集。
3.根据权利要求2所述的用于鲁棒控制的系统辨识方法,其特征在于,所述根据最大可行集求解方法对方程参数数据进行分类,获取到由未知数量的方程参数数值构成的方程参数数据集,包括:
构建线性规划的目标函数约束条件为Aθ-s≤b,s≥0,其中,J为目标函数值,si为弹性变量,b为约束阈值,s为约束参数,N的取值为非零自然数;
在获取目标函数J取值的过程中,如果J取值不等于零,则对目标函数中对应的数据进行删除处理,直至目标函数J取值为零时,得到目标函数最优解。
4.根据权利要求3所述的用于鲁棒控制的系统辨识方法,其特征在于,所述系统辨识方法,还包括:
构建线性规划的目标函数
其中,T代表转置,N的取值为非零自然数。
5.根据权利要求1所述的用于鲁棒控制的系统辨识方法,其特征在于,所述对参数数据集中的数据进行过滤得到滤除数据,将滤除数据进行重分配操作,得到重分配参数数据集,包括:
对参数数据集中的数据进行基于最小截平方和的估计处理,通过估计得到的参数向量滤除参数数据集中的被错误分类的数据;
从被错误分类的数据中选取残差绝对值小于残差阈值的数据,将得到的参数值进行重新估计,得到重分配参数数据集。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江中控软件技术有限公司;浙江大学,未经浙江中控软件技术有限公司;浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711477000.0/1.html,转载请声明来源钻瓜专利网。