[发明专利]一种基于区间二型T-S模糊模型的短期风速预测方法与系统在审

专利信息
申请号: 201711463836.5 申请日: 2017-12-28
公开(公告)号: CN108053077A 公开(公告)日: 2018-05-18
发明(设计)人: 李超顺;邹雯;甘振豪;陈昊;赖昕杰 申请(专利权)人: 华中科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N7/02
代理公司: 深圳市六加知识产权代理有限公司 44372 代理人: 严泉玉
地址: 430070 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 区间 模糊 模型 短期 风速 预测 方法 系统
【说明书】:

发明公开一种基于区间二型T‑S模糊模型的短期风速预测方法与系统。方法中对历史实际风速观测数据进行变分模态分解VMD为K个模态,对每个模态进行属性选择和归一化处理,建立预测模糊模型;利用区间二型模糊C回归聚类IT2‑FCR对模型进行结构划分,并以实际观测风速数据与模糊模型预测结果的加权均方根误差为目标函数利用引力搜索算法GSA进行模型前件参数优化;利用最小二乘法对模型参数进行辨识。从而得到以历史实际观测数据为输入的短期风速预测区间二型T‑S模糊模型。本发明采用一种新型的二型超平面隶属函数,可以提高风速模糊预测模型的辨识精度,能得到更精确的辨识参数,使得对应的风速预测结果与实际观测风速吻合更好。

技术领域

本发明属于风速短期预测技术领域,更具体地,涉及一种基于区间二型T-S模糊模型的短期风速预测方法与系统。

背景技术

传统的化石能源日益枯竭、全球变暖等问题使得新型清洁能源的利用日益迫切。风电作为一种蕴量巨大、转换快速且无公害的能源系统,中国新能源战略开始把大力发展风力发电设为重点。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。风电能源的不稳定性和不可控性给电能稳定利用带来严峻挑战。有效的风速预测机制能为风电场检修计划以及电力系统调度计划提供可靠依据,保证电力系统安全稳定运行。另一方面准确的风速预测能提高风电场的能源利用效率、减轻并网运行时对电网的不利影响、降低风电场运行成本。因此,对风速的精确预测显得尤为重要。

发明内容

本发明的目的是针对风能的不稳定性导致对电能利用效率的不良影响,设计了一种基于区间二型T-S模糊模型的短期风速预测方法与系统,结合GSA优化算法能有效提高T-S模糊预测模型的辨识精度,减小风速预测的预测误差。

为了实现上述目的,本发明提供了一种基于区间二型T-S模糊模型的短期风速预测方法,如图2所示,包括:

步骤1、风速观测时间序列数据data预处理,建立T-S模糊预测模型的输入输出矩阵(input,output):

步骤1.1、利用变分模态分解VMD将风速观测时间序列数据data分解为K个本征模态函数IMF,对每个IMF都独立执行下列步骤;

步骤1.2、取IMF前L间隔数据分量划分候选输入属性矩阵In,其中Output为风速实际观测数据矩阵,LL为风速观测时间序列长度,利用克莱姆-施密特正交化方法GSO进行候选输入属性对实际观测值的相关性排序,从中挑选前M(M≤L)个属性,建立风速预测T-S模糊模型的数据对(Input,Output);

步骤1.3、将数据对(Input,Output)进行数据归一化处理,归一化到区间[-1,1]内,得到归一化后的数据对(input,output);

步骤2、建立区间二型T-S模糊模型,T-S模糊模型是由一组“IF-THEN”模糊规则来描述的非线性系统,每一个规则代表一个子系统,整个模糊系统即为各个子系统的线性组合。所述IF-THEN模糊规则如下:

规则i:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711463836.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top