[发明专利]一种基于语义信息与边缘约束的前景目标检测方法有效

专利信息
申请号: 201711419447.2 申请日: 2017-12-25
公开(公告)号: CN108038857B 公开(公告)日: 2018-10-12
发明(设计)人: 袁丁;强晶晶;胡晓辉;张弘 申请(专利权)人: 北京航空航天大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/194;G06T7/136;G06T7/13;G06T7/90
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 安丽
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 语义 信息 边缘 约束 前景 目标 检测 方法
【说明书】:

发明提供一种基于语义信息与边缘约束的前景目标检测方法,分割能量函数模型借助语义标签信息,完成对图像前景与背景的自动分割,从而实现前景目标的检测。该方法流程图见摘要附图,主要包括五大步骤,步骤一:基于语义边缘约束的图像分层分割;步骤二:位置模型的建立;步骤三:外观模型的建立;步骤四:平滑约束的构建;步骤五:分割模型迭代优化。本发明实验验证,具有可行性、准确性和通用性,可用于诸多高层次的图像分析与图像理解中。

技术领域

本发明涉及一种基于语义信息与边缘约束的前景目标检测方法,分割能量函数模型借助语义标签信息,完成对图像前景与背景的自动分割,从而实现前景目标的检测,具有一定的有效性和通用性,属于计算机视觉领域。

背景技术

前景目标的检测可以通过图象分割技术来实现,图像分割是指利用图像特征,如颜色,纹理等,把图像划分成各具特性的区域并提取出感兴趣目标的技术和过程。

对于图像分割而言,大致可以分为两类,第一类是将图像分割为一些相对较小的超像素区域的超像素分割算法,另一类是将图像分割为前景目标和背景区域的前景背景分割算法。对于第一类图像分割算法而言,超像素分割算法产生的超像素在后续的更深层次的图像操作中类似于图像像素,但是相比于图像像素,超像素区域能够在一定的程度上保证像素点之间的空间支持,大大降低了后续操作的困难程度。因此,超像素区域应该保持图像目标的边界,避免出现分割区域跨界的现象。对于前景背景分割算法,主要是将图像分割为两个部分,一部分被认为是前景目标,另一部分被认为是背景目标,前景背景分割算法可以为后续的图像分析,理解提供完整的前景目标,从而实现前景目标的检测。因此,前景背景分割算法必须保证前景目标的区域必须完整的且具有精确的目标轮廓。在图像分割领域,超像素分割算法和前景背景分割算法一直都是研究的热点,在诸多高层次的图像分析与图像理解算法中有着非常重要的作用。目标识别技术可以从分割获得的前景目标中提取形状特征,人体姿态估计可以从分割获得的前景目标中提取人体的轮廓。

在图像的前景目标检测这一研究方向已经发表了大量的研究算法,其中交互式分割算法是前景目标检测中应用非常成功的算法。但是,交互式分割算法需要利用用户手动标记(通常是围绕图像前景目标的矩形框)标示出图像中前景目标所在的位置,通过最小化目标能量函数完成图像的优化分割,从而实现前景目标的检测。但是这种技术需要人的交互,无法实现自动的图像目标检测。

发明内容

本发明技术解决问题:提供一种基于语义信息与边缘约束的前景目标检测方法,建立自动的前景背景分割能量函数模型,最终实现获取完整且轮廓精确的前景目标的目的

本发明的技术解决方案为:一种基于语义信息与边缘约束的前景目标的检测,实现步骤如下:

(1)基于语义边缘约束的图像分层分割:将输入图像在Lab颜色空间中得到的归一化边缘信息,与在语义标签上得到的语义边缘约束信息进行线性组合得到图像的边缘信息,利用contours2ucm算法将所述图像的边缘信息进行计算,得到衡量输入图像边缘权重的超度量轮廓图UCM,通过设置不同的阈值,对超度量轮廓图UCM进行分层分割,从而得到基于语义边缘约束的图像分层分割区域;

(2)位置模型的建立:对所述输入图像进行多尺度的显著性检测,得到包围所述输入图像的前景目标的显著性窗口,利用所述显著性窗口的重叠性,得到多个显著性窗口包围下的输入图像像素的位置概率,然后利用步骤(1)得到的图像分层分割区域对输入图像像素的位置概率进行更新,从建立输入图像的位置模型;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711419447.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top