[发明专利]基于高效样本选取与参数优化的相关反馈图像检索方法有效

专利信息
申请号: 201711363543.X 申请日: 2017-12-18
公开(公告)号: CN108121781B 公开(公告)日: 2021-09-24
发明(设计)人: 王向阳;梁琳琳;牛盼盼 申请(专利权)人: 辽宁师范大学
主分类号: G06F16/583 分类号: G06F16/583;G06F16/55;G06N3/00
代理公司: 大连非凡专利事务所 21220 代理人: 闪红霞
地址: 116000 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 高效 样本 选取 参数 优化 相关 反馈 图像 检索 方法
【说明书】:

发明公开了一种基于高效样本选取与参数优化的相关反馈图像检索方法,首先提取图像底层特征,并度量示例图像和图像库中图像的欧氏距离;其次,应用MABC‑Kmeans算法对图像库施行聚类操作;然后,用户标注前N幅图像,产生正负例图像,应用距离加权法确定正负例样本,并形成正负例样本集;最后,应用CS‑SVM算法对样本进行训练,把训练结果反馈给用户,继续进行标注直至其满意反馈结果。实验结果表明,本发明方法采用MABC‑Kmeans算法进行样本筛选,减少了用户对样本的标记数量,有效提高了样本精度;采用CS‑SVM算法对样本施行训练,有效提升了分类效果。

技术领域

本发明属于数字图像检索技术领域,涉及基于内容的相关反馈图像检索方法,特别涉及一种基于高效样本选取与参数优化的相关反馈图像检索方法。

背景技术

在Internet技术急速普及的今天,网络数字图像每天以数千兆字节速度增长,且已渗透到人们的日常生活中,多媒体技术的应用以及图像信息促使人们急需优秀的技术用于筛选所需信息。因此,如何高效精准地分类和检索出大量的数字图像源是人们共同关注的热点问题,而基于内容的图像检索(CBIR)则是当下解决该问题的主要技术。

CBIR与传统需要人工标注的基于文本的图像检索(TBIR)相比,避免了不同人对同一图像产生不同理解而引起的标注差异,且更加注重图像的边缘、纹理和颜色等固有的底层特征。但图像的信息不单指底层特征,还含有人类视觉主观感受且尤为重要。如何良好的解决底层视觉特征和人类的视觉主观感受的差距问题,即缓解语义鸿沟问题,目前已成为学者最关注的问题之一,相关反馈图像检索技术应运而生。

近年来,相关反馈图像检索方法可归结为下列四类:查询权重调整法,移动查询点法,查询扩展法和支持向量机(SVM)法,其中支持向量机法相对其他几类方法具有更高的检索能力和更好的检索结果。但现有的基于支持向量机的相关反馈图像检索方法仍然存在时间复杂度高、样本选择效率和查准率较低等不足,如何降低时间复杂度,提升样本选择效率和检索查准率是现阶段急需解决的问题。

发明内容

本发明是为了解决现有技术所存在的上述技术问题,提供一种基于高效样本选取与参数优化的相关反馈图像检索方法。

本发明的技术解决方案是:一种基于高效样本选取与参数优化的相关反馈图像检索方法,其特征在于按如下步骤进行:

约定:JQ分别指图像库中的图像和示例图像;表示QJ之间的欧氏距离;分别指QJ的特征向量在第i个分量处的值;PSNS分别代表正例样本和负例样本;MABC为改进的人工蜂群算法;DE为差分算法;OS表示最优解,FS表示可行解;EB表示雇佣蜂,OB表示跟随蜂,SB表示侦查蜂;K指聚类类别数,MCN指最大迭代次数,Limit指控制参数,指适应度,指初始解,为侦查蜂邻域搜索产生的新解,CSO为当前解,为各个解的概率值;为训练样本集,为正例样本,为正例样本个数,为负例样本;为各聚类中心与目标图像之间的距离,为归一化后的距离;CS指布谷鸟算法;Train Test分别表示训练样本和测试样本;代表迭代次数,代表最大迭代次数,代表给定的种群数量,和分别表示卵被宿主发现的概率和宿主鸟发现寄生蛋的概率,Np为鸟巢位置;

a. 初始设置

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于辽宁师范大学,未经辽宁师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711363543.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top