[发明专利]一种基于图像混合矩的机器人视觉伺服控制方法有效

专利信息
申请号: 201711345292.2 申请日: 2017-12-15
公开(公告)号: CN107901041B 公开(公告)日: 2021-06-15
发明(设计)人: 徐德刚;周雷;沈添天;洪松涛;阳春华;桂卫华 申请(专利权)人: 中南大学
主分类号: B25J9/16 分类号: B25J9/16
代理公司: 长沙市融智专利事务所(普通合伙) 43114 代理人: 欧阳迪奇
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 图像 混合 机器人 视觉 伺服 控制 方法
【说明书】:

发明公开了一种基于图像混合矩的机器人视觉伺服控制方法。先给出机器人期望位姿下对目标物成像后与空间姿态一一对应的混合矩特征构建;然后在任意姿态下获取目标物图像,计算当前的混合矩特征信息值,并根据期望图像与当前图像的信息计算混合矩特征值的偏差,如果偏差小于预设阈值,说明机器人已经到达期望位姿,否则推导与混合矩特征相关的图像雅克比矩阵,利用视觉伺服控制器使得机器人朝向期望的位姿运动,直到特征偏差小于预设阈值,结束控制流程。本发明通过引入与机器人空间运动轨迹相对应的图像域混合矩特征作为控制输入,完成对眼在手机器人系统在工作空间模型未知情形下的视觉伺服控制,可以广泛应用基于机器视觉的机器人智能控制。

技术领域

本发明涉及一种机器人视觉伺服控制方法,属于机器人学、机器视觉与控制领域。

背景技术

近二十年来工业机器人在诸多工业环境中得到了广泛的应用。为满足复杂的作业要求,机器人的研究已经从原始简单的机械控制转变成多传感器信息融合的智能设备。传统的机器人在面对单一作业要求、系统参数给定的情况下,可以采用常规的控制策略进行重复的生产工作,但面临作业环境复杂且系统参数不确定时,末端执行器会因为目标姿态的不确定性而无法满足高速、高精度、智能化作业的需求。为提高工业机器人控制系统的鲁棒性,视觉传感器提供了有效的解决方案,为工作状态不确定性的目标对象提供丰富的信息反馈。机器人视觉伺服控制系统利用视觉感知建立图像坐标系和空间坐标系间的映射关系,然后利用视觉算法和图像处理的相关知识对工作空间进行三维描述,最后根据识别定位结果进行目标对象的处理。

常见的视觉控制方法分为基于位置的视觉伺服方法(PBVS)和基于图像的视觉伺服方法(IBVS)。PBVS利用从图像信息中提取出的目标位置,使用坐标变换、位姿估计算法得到目标与机器人末端执行器的相对位置关系,并据此设计视觉伺服控制引导机器人进行运动;IBVS将控制误差定义在图像平面,利用图像特征进行视觉信息反馈控制,构造图像特征变化与机器人动作之间非线性映射关系的雅克比矩阵,并在系统运行过程中连续更新,从而实现视觉伺服控制。

发明内容

本发明的目的在于针对当前IBVS中主要从图像中提取点、线段、圆弧等简单几何特性使系统鲁棒性和通用性较差的技术问题,提供一种提取图像新特征的机器人视觉伺服控制方法。本发明方法针对目标物在相机不同位姿下成像可能产生畸变的特点,通过引入图像中目标物的混合矩信息,将改进后的图像特征以及雅克比矩阵用于机器人视觉伺服控制。

本发明所述的控制方法涉及一种图像无标定的眼在手机器人控制系统,包括视觉传感器及图像处理单元,运动控制器,机器人本体。其中视觉传感器及图像处理单元用于图像采集和提取目标的混合矩特征;运动控制器完成视觉伺服控制器发出的运动指令,即通过逆运动学解算将末端关节的位姿变化映射到机器人本体各个关节的运动情况。

为了实现上述技术目的,本发明的技术方案是,

一种基于图像混合矩的机器人视觉伺服控制方法,包括以下步骤:

S1:建立一个包含眼在手机器人活动区域的空间坐标系,通过图像处理识别目标物在机器人末端所持相机运动过程中的实时成像位置,并提取图像中的目标物轮廓,给出机器人任意位姿下目标图像的特征信息;

S2:根据机器人期望位姿下目标图像的特征信息得到期望混合矩s*,再根据步骤S1中得到的机器人当前任意位姿下目标图像的特征信息构建实时混合矩s,并计算图像偏差Δs=(s-s*),如果Δs小于预设阈值δ,则机器人末端所持相机对目标物成图已达到期望混合矩值,也即机器人达到期望位姿,控制流程结束,否则执行步骤S3;

S3:利用步骤S2中得到的实时混合矩s,构建基于实时混合矩的雅克比矩阵Ls

S4:根据步骤S2中得到的图像偏差Δs和步骤S3中得到的雅克比矩阵Ls,结合视觉伺服控制器调整机器人末端的位姿;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711345292.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top