[发明专利]基于U-Net深度学习网络的粒度检测分析方法有效

专利信息
申请号: 201711338870.X 申请日: 2017-12-14
公开(公告)号: CN108182674B 公开(公告)日: 2021-11-23
发明(设计)人: 郭杰;李端发;万力 申请(专利权)人: 合肥金星机电科技发展有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06T7/13;G06T7/70
代理公司: 合肥诚兴知识产权代理有限公司 34109 代理人: 汤茂盛
地址: 230088 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 net 深度 学习 网络 粒度 检测 分析 方法
【说明书】:

发明公开了一种基于U‑Net深度学习网络的粒度检测分析方法,包括如下步骤:A、收集待检测物的大量粒块图像;B、对粒块图像进行预处理,得到标准化图像;C、对标准化图像进行人工标定,绘制出粒块的边缘得到人工标定图像,将人工标定图像作为标签图像;D、搭建基于U‑Net的深度学习网络,将步骤B中的标准化图像作为输入图像、步骤C中的标签图像作为输出图像载入至深度学习网络,开始训练,得到训练好的粒度模型。进行训练得出待检测物的粒块的粒度模型,之后针对待检测物进行粒度分析时,只需将拍摄处理好的标准化图像输入至粒度模型中,便可快速的对粒块或粉体完成粒度分布分析。

技术领域

本发明属于视觉检测领域,特别涉及一种基于U-Net深度学习网络的粒度检测分析方法。

背景技术

粒度检测是通过特定的仪器和方法对粒块粒度特性进行表征的一项实验工作。粒块在日常生活和工农业生产中的应用非常广泛,如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等。在不同领域,对粒块特性有不同的要求,在所有反映粒块特性的指标中,粒块的大小是通过粒度放映的,所以粒度分布是所有应用领域中最受关注的一项指标。粒度分布对粒块的使用效果有重要的影响,如粒度分布是煤块、水泥品位分类中的重要一环,所以客观真实地反映粒块或粉体的粒度分布是一项非常重要的工作。基于视觉的粒块粒度检测是一种新兴的技术,它利用相机拍摄粒块图像,通过图像处理可以快速分析得到粒度分布,具有非接触式、远距离测量、智能分析的特点。但是现有技术中使用传统数字图像方法,需要综合多种图像处理算法,如图像均衡化、Sobel边缘检测、阈值分割、距离变换、形态学校正等,其流程复杂,有大量参数需要调整,而且在实际图像分析过程中,重叠粒块的边缘检测和分割是需首要解决的难题。

发明内容

本发明的目的在于提供一种基于U-Net深度学习网络的粒度检测分析方法,得出待检测物的粒度模型,快速的对粒块完成粒度分布分析。

为了实现上述目的,本发明采取以下技术方案:一种基于U-Net深度学习网络的粒度检测分析方法,包括如下步骤:A、收集待检测物的大量粒块图像;B、对粒块图像进行预处理,得到标准化图像;C、对标准化图像进行人工标定,绘制出粒块的边缘得到人工标定图像,将人工标定图像作为标签图像;D、搭建基于U-Net的深度学习网络,将步骤B中的标准化图像作为输入图像、步骤C中的标签图像作为输出图像载入至深度学习网络,开始训练,得到训练好的粒度模型。

上述技术方案中,对待检测物的大量粒块图像进行预处理得到标准化图像,先采用人工根据标准化图像进行绘制粒块边缘,得到标签图像,然后将标准化图像、标签图像分别作为输入、输出图像载入至基于U-Net的深度学习网络中,进行训练得出待检测物的粒块的粒度模型,之后针对待检测物进行粒度分析时,只需将拍摄处理好的标准化图像输入至粒度模型中,便可快速的对粒块或粉体完成粒度分布分析。

附图说明

图1为本发明流程图。

具体实施方式

结合附图1对本发明做出进一步的说明:

一种基于U-Net深度学习网络的粒度检测分析方法,包括如下步骤:A、收集待检测物的大量粒块图像;B、对粒块图像进行预处理,得到标准化图像;C、对标准化图像进行人工标定,绘制出粒块的边缘得到人工标定图像,将人工标定图像作为标签图像;D、搭建基于U-Net的深度学习网络,将步骤B中的标准化图像作为输入图像、步骤C中的标签图像作为输出图像载入至深度学习网络,开始训练,得到训练好的粒度模型。对待检测物的大量粒块图像进行预处理得到标准化图像,先采用人工根据标准化图像进行绘制粒块边缘,得到标签图像,然后将标准化图像、标签图像分别作为输入、输出图像载入至基于U-Net的深度学习网络中,进行训练得出待检测物的粒块的粒度模型,之后针对待检测物进行粒度分析时,只需将拍摄处理好的标准化图像输入至粒度模型中,便可快速的对粒块或粉体完成粒度分布分析。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥金星机电科技发展有限公司,未经合肥金星机电科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711338870.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top