[发明专利]一种基于局部特征的多视角分类器及设计方法有效
申请号: | 201711237173.5 | 申请日: | 2017-11-30 |
公开(公告)号: | CN107992890B | 公开(公告)日: | 2019-06-14 |
发明(设计)人: | 朱昌明 | 申请(专利权)人: | 上海海事大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08 |
代理公司: | 上海信好专利代理事务所(普通合伙) 31249 | 代理人: | 潘朱慧 |
地址: | 201306 上海市*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 局部 特征 视角 分类 设计 方法 | ||
本发明公开了一种基于局部特征的多视角分类器,包含:无标签多视角大数据集生成模块,全局和局部结构风险最小化分类器实现模块,多视角数据局部特征提取模块。其优点是:其通过有效数据增强、分类器设计原则构建以及局部特征提取三个方面,有效提升多视角数据集的分类性能。
技术领域
本发明涉及模式识别技术领域,具体涉及一种基于局部特征的多视角分类器设计方法。
背景技术
目前生活中普遍存在多视角数据。以娱乐类网页为例,每一个网页有文本、音频、视频、图片等。每种不同类别的信息构成了网页数据的一个视角,即文本视角、音频视角等。这些视角都可以用于标识一个娱乐网页。而不同类别的网页,在这些视角的陈述上也会有所不同。比如政治类新闻网页和娱乐类网页,它们的文本内容、视频内容等一般不同。为了对这些多视角数据进行分类,人们提出了相关的分类器,即多视角分类器。
目前常见的多视角分类器主要从(1)协同训练;(2)多核学习;(3)子空间学习;(4)多矩阵学习等方面设计。(1)协同训练就是在数据集的两个视角中,针对有标签样本各训练出一个分类器,然后每个分类器从无标签样本中挑选出若干置信度较高的样本进行标记,并把它们加入另一个分类器的有标签训练样本集中,以便对方利用这些新标记的样本进行更新。协同训练过程不断迭代进行,直到达到某个停止条件。这一算法要求两个视角的数据充分冗余,这一条件对大多数数据集难以满足。(2)多核学习旨在利用核函数将多个视角的特征映射到另一种空间中,从而使得原本非线性可分的特征集合在新空间中可能线性可分。(3)子空间学习多用于解决维度灾难问题。对于同一对象而言,多视角数据具有语义相似,表示异构的特点。即对于同一个对象而言,有M种视角特征,分别分布在不同维度的高维特征空间中。它们都用于描述同一个对象,但是因为维度空间的不同给人们处理数据带来了不便。为了克服这个困难,基于子空间的多视角学习试图从多个高维原始特征空间中发现一个统一的低维子空间,从而获得蕴含多视角信息的统一特征表达。目前在多视角学习中,运用比较普遍的子空间方法有基于投影和基于因子分解两个系列。前者的代表是典型关联分析(Canonical Correlation Analysis,CCA),后者的代表是多输出正则特征投影(Multi-Output Regularized Feature Projection,MORFP)。(4)多矩阵学习不同于协同训练、多核学习和子空间学习。后三者专注于多视角数据,无法处理单视角数据。但是现实世界中,依然存在一些数据只有一个视角。因此,人们提出多矩阵学习的方式,将单视角转变成多视角,又不失去特征信息。比如来说,有一类单视角数据,只有一个视角,视角特征是1×120的向量。则多矩阵学习就把这些特征矩阵化为不同的矩阵表示形式(如60×2、30×4、15×8、5×24),每个矩阵表示形式被视为一个视角,反映数据在该视角下的信息,并对算法性能产生不同的表示信息和判别作用。
然而,纵观目前多视角分类器的设计,尽管不少都考虑到了局部特征给分类器性能带来的好处,但依然普遍存在三类问题。
问题一、有效数据信息有待增强:通过多核学习和多矩阵学习的发展现状,我们发现,用于训练的有效数据信息的不足会使得分类器性能受到限制。而从相关的典型关联分析方法的实验结果可知,这类信息的不足还会造成低维子空间中的统一特征表达方式对部分样本的特征表达失真。为了克服这一不足,增加无标签的训练样本成为了一个较好的解决方案。申请人曾利用已知的有标签样本随机生成一系列无标签样本,并在改进的基于的多核修正型Ho-Kashyap算法(ImprovedMultiple KernelModification Ho-Kashyap,INMKMHK)的基础上设计相关的分类器。但是这种随机生成的方式无法保证生成的样本必定能提供有效的信息,而且也忽视了样本局部特征的作用。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海海事大学,未经上海海事大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711237173.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种便于调节的安全型拉电闸
- 下一篇:输变电线路倒闸装置