[发明专利]一种遥感视频卫星运动车辆目标感兴趣区域自动提取方法有效
申请号: | 201711223774.0 | 申请日: | 2017-11-29 |
公开(公告)号: | CN108022249B | 公开(公告)日: | 2020-05-22 |
发明(设计)人: | 王桂周;康金忠;何国金;尹然宇;江威;张兆明;彭燕;程博 | 申请(专利权)人: | 中国科学院遥感与数字地球研究所 |
主分类号: | G06T7/136 | 分类号: | G06T7/136;G06T5/30;G06T7/155;G06T7/187;G06T7/194;G06T7/62 |
代理公司: | 北京亿腾知识产权代理事务所(普通合伙) 11309 | 代理人: | 陈霁 |
地址: | 100094*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 遥感 视频 卫星 运动 车辆 目标 感兴趣 区域 自动 提取 方法 | ||
本发明是一种遥感视频卫星中运动车辆目标感兴趣区域自动提取方法,首先用检测速度较快的帧间差分法对一段视频卫星数据进行快速初检测;其次使用最大类间方差法(OTSU方法)将每幅差分图像自动分为前景车辆和背景两类,并生成二值图像;进而对每幅二值图像采用形态学处理消除小的孤立点或者洞对车辆目标整体性的影响,并将所有二值检测结果叠加到一起形成该段视频内运动目标总的感兴趣区域;最后对总感兴趣区域图进行连通域分析得到连通域的面积、长宽比,通过对连通区域的长宽比和面积设置限定条件,最终得到运动车辆目标的感兴趣区域。
技术领域
本发明是一种遥感视频卫星运动车辆目标感兴趣区域自动提取方法,基于一段遥感视频卫星数据快速自动得到运动车辆目标的感兴趣区域。本发明可广泛用于遥感视频卫星数据运动车辆目标检测、跟踪与车流量分析等研究。
背景技术
遥感视频卫星作为一种新型对地观测数据获取手段,通过对特定区域采取“视频录像”的方式,既可以实现大范围覆盖又弥补了传统卫星受重访周期限制无法对特定区域或目标进行高频次观测的不足,可用于大尺度范围内动态目标检测、跟踪及其瞬时特性分析。遥感视频卫星可以快速直观获得大范围运动车辆目标的信息,可作为智能交通系统等车辆信息新的数据来源。然而相比于传统的视频监控数据,遥感卫星视频数据具有以下特点:首先,视频卫星在成像的过程中,传感器的缓慢移动导致视频中的建筑物和树木发生位移变化,出现了很多伪运动目标,使背景变的更加复杂;其次,视频卫星成像空间分辨率的限制使得车辆在视频中仅为几个到十几个像素大小并且与背景的对比性较低,无法获取车辆更多的细节信息。因此,如何从遥感视频卫星数据中快速提取运动车辆目标同时抑制其它伪运动物体的干扰成为视频卫星数据应用研究的热点与难点。
视频卫星成像传感器的移动、光照变化和树木的摆动等不稳定因素导致卫星视频数据中背景动态变化,伪运动目标增多,增加了运动车辆目标检测的复杂度。对卫星视频数据直接应用传统监控视频运动目标检测方法导致误检率高。然而运动车辆通常沿道路行驶,如果能在运动车辆目标感兴趣区域的约束下进行运动目标进行检测则可以有效的抑制由于背景动态变化导致的伪目标。通过手动绘制或者利用GIS矢量辅助数据可以获取感兴趣区域的掩膜,但这些方法都需要依靠先验知识且实时性差,很难实现感兴趣区域的快速自动获取。针对以上不足,本发明提出了一种遥感视频卫星中运动车辆感兴趣区域自动提取方法,获取的感应兴趣区域用于约束运动车辆目标检测的区域,可以有效消除由于背景动态变化导致的伪目标,对于促进遥感视频卫星数据的深入应用具有重要意义。
发明内容
本发明是一种遥感视频卫星中运动车辆目标感兴趣区域自动提取方法,首先用检测速度较快的帧间差分法对一段视频卫星数据进行快速初检测;其次使用最大类间方差法(OTSU方法)将每幅差分图像自动分为前景车辆和背景两类,并生成二值图像;进而对每幅二值图像采用形态学处理消除小的孤立点或者洞对车辆目标整体性的影响,并将所有二值检测结果叠加到一起形成该段视频内运动目标总的感兴趣区域;最后对总感兴趣区域图进行连通域分析得到连通域的面积、长宽比,通过对连通区域的长宽比和面积设置限定条件,最终得到运动车辆目标的感兴趣区域。
方法具体的步骤为:
第一步:基于帧间差分方法实现一段卫星视频数据中每帧图像中运动目标的初检测
从视频数据的第二帧开始,将当前帧与前一帧图像分别做差值运算,求得图像对应位置像素值差的绝对值,得到帧间差分结果。
第二步:采用OTSU算法将每幅差分图像实现前景车辆和背景的二分类,并生成二值化图像,
具体步骤如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院遥感与数字地球研究所,未经中国科学院遥感与数字地球研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711223774.0/2.html,转载请声明来源钻瓜专利网。