[发明专利]一种实体关系自动识别方法及系统有效

专利信息
申请号: 201711190865.9 申请日: 2017-11-24
公开(公告)号: CN107944559B 公开(公告)日: 2021-04-27
发明(设计)人: 王丽宏;彭浩;马宏远;刘哲;聂健;袁石;孙佩源;王博;贺敏;刘玮 申请(专利权)人: 国家计算机网络与信息安全管理中心
主分类号: G06N5/02 分类号: G06N5/02;G06N3/04
代理公司: 北京华夏泰和知识产权代理有限公司 11662 代理人: 陈英
地址: 100029*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 实体 关系 自动识别 方法 系统
【说明书】:

发明涉及一种实体关系自动识别方法及系统,该方法包括:训练卷积神经网络得到实体关系识别模型;获取对应待确认实体组的相关语料库;将相关语料进行分词,并将分词得到的相关词语转化为相关词向量;将相关词向量按相关语料转化为矩阵作为实体关系识别模型的输入,得到相关关系种类和相关关系种类的相似度值,将相似度值高的相关关系种类作为待确认实体组的关系种类。本发明通过锻炼卷积神经网络作为实体关系识别模型,在出现新增实体时,计算得到一系列新增实体组的关系种类,并得出每一项关系种类的相似度值,通过具体的数值来确定相关关系种类的程度,提高得到的新增实体组之间关系种类的准确性。

技术领域

本发明涉及实体关系识别技术领域,尤其涉及一种实体关系自动识别方法及系统。

背景技术

目前,知识图谱最早被应用于搜索引擎领域,旨在通过语义把碎片化的数据关联起来,让用户能直接搜索到事务(Things),而不是文本字符串(Strings)。在搜索引擎中引入知识图谱大幅的提升和优化了搜索体验。

近年来,随着人工智能的再次兴起,知识图谱又被广泛的应用于聊天机器人和问答系统中,用于辅助深度理解人类的语言和支持推理,并提升人机问答的用户体验等。典型的如IBM的Watson,苹果的Siri,Google Allo,Amazon Echo,百度度秘,公子小白等。

此外,知识图谱还被用来提升数据分析的能力和效果。例如著名的大数据公司Palantir利用知识图谱建立数据的关联以提升上游数据分析的效果。与知识图谱有关的语义技术也被用来提升机器与机器之间的语义互操作能力,解决机器之间的语义理解问题。例如,全球最大物联网标准化组织OneM2M就把语义和知识技术作为物联设备抽象和语义封装的技术基础。

在金融、农业、电商、医疗健康、环境保护等大量的垂直领域,知识图谱都得到广泛的应用。例如,很多金融领域公司也构建了金融知识库以进行碎片化金融数据的集成与管理,并辅助金融专家进行风控控制、欺诈识别等;生物医疗专家通过集成和分析大规模的生物医学知识图谱,辅助其进行药物发现、潜在靶点识别等多方面任务。

在所关注的这个特定问题中,所研究的对象是文本。在文本当中会出现许多实体,比如,“张三是北京航空航天大学的学生”这句话中出现了两个实体,一个是“张三”,一个是“北京航空航天大学”,而“学生”不是实体,“北京”或是“大学”也不是。而“张三”和“北京航空航天大学”之间的关系是“学生”关系。而这些实体和他们之间的关系,就是想要构建的目标。

发明内容

(一)要解决的技术问题

本发明实施例要解决的技术问题是解决新出现的实体在现有的知识图谱中之间关系的无法确定的问题。

(二)技术方案

为了解决上述技术问题,本发明实施例提供了一种实体关系自动识别方法,包括:

对每一种关系种类从知识图谱中获取具有所述关系种类的若干实体组;从知识库中分别获取对应不同所述实体组的语料库,将所述语料库中的语料进行分词,并将分词得到的词语转化为词向量;

将语料库中的所述词向量转化为矩阵作为输入,将所述语料库对应的实体组的关系种类作为输出,训练得到实体关系识别模型;

从知识库中获取对应待确认实体组的相关语料库;将所述相关语料库中的相关语料进行分词,并将分词得到的相关词语转化为相关词向量;

将所述相关词向量按相关语料转化为矩阵作为所述实体关系识别模型的输入,得到所述相关语料库中每一条相关语料的相关关系种类和所述相关关系种类的相似度值;

将所有所述相似度值按大小进行排序,将排名名次高于预设排名名次的相似度值对应的所述相关关系种类作为所述待确认实体组的关系种类。

在上述技术方案的基础上,本发明实施例还可以做如下改进。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家计算机网络与信息安全管理中心,未经国家计算机网络与信息安全管理中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711190865.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top