[发明专利]一种基于深度学习的车辆检测方法有效
申请号: | 201711104408.3 | 申请日: | 2017-11-10 |
公开(公告)号: | CN107944354B | 公开(公告)日: | 2021-09-17 |
发明(设计)人: | 孙涵;阮航 | 申请(专利权)人: | 南京航空航天大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 贾郡 |
地址: | 210016 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 车辆 检测 方法 | ||
本发明公开了一种基于深度学习的车辆检测方法,特别是利用深度网络中的最后一个卷积层的特征图权值相加的方法实现对车辆的精确定位。属于计算机视觉技术领域。本发明首先利用车辆数据库训练深度学习网络,然后将待检测图片送入训练好的网络,经过一次前向传播得到该图片的类别信息,依据类别信息获得参数中权值最大的权重,与最后一层卷积层的特征图进行叠加,然后与待检测图片进行图像融合,最后实现车辆的准确定位,该算法具有较好的准确性以及适应性。有效解决了传统图像处理算法实现车辆检测时的环境干扰,光照影响,障碍物影响和准确率低等问题,可适用于不同场景下的车辆检测。
技术领域
本发明属于计算机视觉技术领域,具体涉及一种基于深度学习的车辆检测方法,利用深度网络中的最后一层卷积层的特征图进行权值相加的方法实现对车辆的精确定位。
背景技术
近年来随着经济的不断增长,汽车的数量也在持续增加,由此引发了一系列的交通问题,为解决这些问题智能交通系统成为研究热点。而车辆检测属于智能交通系统中最重要的环节,精确的定位车辆位置对智能交通系统的车辆计数、车辆分类等研究领域有着关键性作用。
目前车辆检测算法主要有基于特征的车辆检测算法、基于视觉的车辆检测算法、基于帧间差分的车辆检测算法等。其中基于视觉和基于帧间差分的车辆检测算法主要基于运动车辆检测,而基于特征的车辆检测算法更常用于静态图像检测。
目前,对于基于特征的车辆检测算法通常需要图像预处理、图像特征提取、图像分类等步骤。李云翀等人将直方图分析和自适应阈值结合来分割阴影和边缘特征,从而得到车辆区域,但该方法对图像光照情况的要求比较高,没有很好的鲁棒性(李云翀,何克忠,贾培发.基于阴影特征和Adaboost的前向车辆检测系统[J].清华大学学报:自然科学版,2007,47(10):1713-1716.)。文献提取图像的Harr-like特征并用Adaboost分类器识别车辆来实现车辆检测,该方法对需要提取大量的Harr-like特征,计算量大(金立生,王岩,刘景华,等.基于Adaboost算法的日间前方车辆检测[J].吉林大学学报:工学版,2014,44(6):1604-1608.)。李琳辉等人提出根据车底阴影特征结合卷积神经网络进行前方车辆检测,将日间道路环境分为弱光照、正常光照、强光照三类,进行自适应阴影分割生成阴影区域。但是该方法在光照微弱,车辆灰度与道路灰度接近时无法适用,而且光照的划分具有一定的人为限定性,没有很好的鲁棒性和适应性(李琳辉,伦智梅,连静,等.基于卷积神经网络的道路车辆检测方法[J].吉林大学学报(工),2017,47(2):384-391.)。赵英男等人提出Gabor滤波器提取特征,并用SVM分类器分类的方式实现车辆检测,该方法主要适用于红外车辆,而且应用阈值分割进行候选区域确定,该算法对阈值要求比较高,有一定的局限性。
发明内容
发明目的:为解决现有车辆检测算法过度依赖图像的光照、质量的问题,使车辆检测具有更好的适应性和可应用性,本发明提供一种基于深度学习的车辆检测方法。
技术方案:一种基于深度学习的车辆检测方法,包括以下步骤:
步骤S1:将带有车辆品牌标注信息的车辆数据库进行去均值处理,选取ImageNet数据库训练好的深度学习模型作为基本网络模型,在基本网络模型的基础上用去均值的车辆数据库采取微调的方式训练网络,得到最终用于车辆检测的深度学习网络;
步骤S2:将待检测图像缩放到固定尺寸,并对待检测图像进行去均值处理,得到去均值的待检测图像;
步骤S3:将去均值的待检测图像送入深度学习网络中,经过卷积层、池化层、全连接层得到最大分类概率,依据最大分类概率得到对应的全连接层的权值;
步骤S4:将去均值的待检测图像输入到深度学习网络,在最后一层卷积层得到特征图结果,对特征图与步骤S3得到的权值进行叠加,将叠加后的多张特征图结果进行像素值相加,并进行归一化操作,得到最终的特征图结果;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711104408.3/2.html,转载请声明来源钻瓜专利网。