[发明专利]基于改进BP神经网络算法的配网电采暖负荷预测方法有效

专利信息
申请号: 201711029996.9 申请日: 2017-10-26
公开(公告)号: CN107748934B 公开(公告)日: 2023-06-23
发明(设计)人: 周红莲;李娟;薛静杰;华东;张三春;周会宾;王燕;李忠政;郑伟东;任知猷;陈露锋;孙家文;李娴;李清;李光应;孔锦绣;罗攀;刘自发;王泽黎 申请(专利权)人: 国网新疆电力公司经济技术研究院;国家电网公司;华北电力大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q10/0631;G06Q50/06;G06N3/044
代理公司: 北京科亿知识产权代理事务所(普通合伙) 11350 代理人: 汤东凤
地址: 830002 新疆维吾尔*** 国省代码: 新疆;65
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 改进 bp 神经网络 算法 配网电 采暖 负荷 预测 方法
【说明书】:

一种基于改进BP神经网络算法的配网电采暖负荷预测方法,包括获取历史数据以及参数设置步骤S1,相关系数计算步骤S2,权系数赋值步骤S3,各层神经元计算输出步骤S4,结果输出判断步骤S5,上下限判断步骤S6,神经元学习误差计算步骤S7,基于学习误差的权系数修正步骤S8,随机修正权系数步骤S9,随机修正偏倚和学习率步骤S10,判断是否到最后一组数据步骤S11和最后的预测步骤S12。本发明能够配网电采暖负荷预测方法提高收敛速度,避免输出平坦区,提高权值改变幅度,考虑了弃风供暖和新建绿色建筑对电采暖推广的影响,使电采暖负荷预测结果更接近实际值。

技术领域

本发明涉及一种负荷预测方法,具体的,涉及一种基于改进BP神经网络算法的配网电采暖负荷预测方法。

背景技术

配网负荷预测,是配电网规划的基础,然而随着大量电采暖负荷的接入,采暖内大幅度增加了配电网的负荷,配电网的规划需及时调整适应大规模电采暖负荷的接入,因此,准确的预测电采暖负荷是当前配电网规划前提和基础。

电采暖负荷预测与历史数据的关系较小,主要受以下两个因素的影响:1)我国推广电采暖的主要目的之一是弃风供暖,大规模消纳多余风电,提高新能源利用效率,电采暖的推广受当地年风力发电量利用率的影响较大;2)随着我国新建建筑节能标准的提高,大量新建建筑采用节能75%设计标准,相对于传统采暖,推广电采暖有助于用户节约采暖费用,提高了用户采用电采暖的积极性。目前,还没有考虑以上两个因素的电采暖负荷预测方法。虽然,BP神经网络法可考虑以上影响因素对电采暖负荷预测的影响,但是目前还没有基于BP神经网络法的电采暖负荷预测方法研究。

目前,BP神经网络方法大量应用于配网负荷预测,步骤为:

1)随机赋值权系数;

2)计算各层输出;

3)判断输出与期望值是否满足要求,若满足转向步骤5;

4)计算各层学习误差,修正权系数,转向步骤2);

5)基于计算的权,预测负荷。

但是,该技术应用到电采暖负荷预测后,存在的问题是:权是随机给定的,大量的反复实验导致收敛过程慢;对于给定的权修正量很小,这样优化是通过沿局部改善的方向逐渐进行调整的,很难达到满意的预测结果;在输出接近边界值0或1的条件下,易出现平坦区,权改变极小,容易使训练过程停顿。

因此,如何优化神经网络算法,提高收敛速度,避免输出平坦区,改善训练效果成为现有技术亟需解决的技术问题。

发明内容

本发明的目的在于提出一种基于改进BP神经网络算法的配网电采暖负荷预测方法,能够克服现有BP神经网络算法的缺点,提高电采暖负荷预测的精度,提高收敛速度,避免输出平坦区,提高权值改变幅度。

为达此目的,本发明采用以下技术方案:

一种基于改进BP神经网络算法的配网电采暖负荷预测方法,包括如下步骤:

获取历史数据以及参数设置步骤S1:获取表示输入的历年规划的新建建筑的建筑面积和历年风力发电量利用率,表示输出的历年电采暖负荷值,所述历年包括同时有风力发电和电采暖负荷的时间段,设有m层的神经网络,所述神经网络共有n个神经元,并从1到n顺序编号,所述神经网络计算的数据组数为Vmax=year-1,year是历史数据的年数,令迭代次数it=1,给定最大迭代次数itmax,设训练组数变量v=1,给定输出误差εy,给定神经元接近上限值的误差ε和接近下限值的误差ε,给定学习率η和各神经元的偏倚θi,i=3,4,...,n,电采暖负荷期望输出为y;

相关系数计算步骤S2,分别利用历年的风力发电量利用率、历年新建建筑面积与历年电采暖负荷值计算相关系数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网新疆电力公司经济技术研究院;国家电网公司;华北电力大学,未经国网新疆电力公司经济技术研究院;国家电网公司;华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711029996.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top